• Title/Summary/Keyword: 과립형

Search Result 172, Processing Time 0.026 seconds

Electron Microscopic Study on the Endocrine Cells in the Stomach and Duodenum of the Pond Tortoise(Amyda sinensis) (자라 위 및 십이지장 내분비세포에 관한 전자현미경적 연구)

  • Jeon, Chang-Jin;Lee, Jae-Hyun;Lee, Chang-Eon
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 1986
  • The endocrine cells of the stomach and duodenum of the pond tortoise (Amyda sinensis) have been studied by electron microscopy. At least six types of endocrine cells could be identified in these regions. Type I cells were characterized by having pleomorphic or medium sized granules ($100{\sim}430nm$ in diameter, mean; 290 nm) which were moderate in electron density. Type II cells were characterized by having pleomorphic or medium sized granules ($190{\sim}430nm$ in diameter, mean; 280 nm) which were high in electron density. Type III cells were characterized by having large oval or irregular granules($170{\sim}650nm$, mean: 430 nm) with wide vesicular halo which were high in electron density. Type IV cells were characterized by having round or medium sized granules($140{\sim}370nm$, mean; 240 nm) which were low to moderate in electron density and showed a very thin halo. Type V cells were characterized by having large round or oval granules($300{\sim}600nm$, mean; 410 nm) which were low to moderate in electron density and showed a dense core and a wide clear halo. Microfilaments were also found in the cytoplasm. Type VI cells were characterized by having round and small granules($100{\sim}220nm$, mean; 160 nm) which were low to moderate in electron density and showed a very thin halo or crystalline structure of the contents. Many microfilament bundles were also found in the cytoplasm.

  • PDF

Ultrastructural Studies on the Adrenal Medulla of The Developmental Rats (연령에 따른 흰쥐 부신 수질의 전자현미경적 관찰)

  • Park, Joo-Hee;Lee, Jae-Hyun;Ku, Sae-Kwang;Lee, Hyeung-Sik
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.215-224
    • /
    • 1998
  • To investigate ultrastructural changes on the adrenal glands of the developmental rats, tissues were collected at 20 days of gestation, at birth, 7 days, 15 days and 30 days after birth and studied by electron microscope. In the medulla of adrenal gland of the rat, two types of granules were observed at ultrastructural level. The one were adrenaline $(123\sim200nm)$ and the others were noradrenaline ($177\sim279nm$ of long axis, $124\sim194$ of short axis). Adrenaline granules were characterized by presence of round or spherical with low or moderate electron density. The granules showed a wide lucent or clean halo between the contents and the limiting membrane. On the other hand noradrenaline granules were characterized by the presence of irregular shape with high electron density. This granules showed a wide lucent between the contents and limiting membrane. These two types of granules were co-existed in one cell in the late gestation and at birth, but after that two types of cells were clearly observed. The different sizes and numbers of granules were observed with ages.

  • PDF

Ultrastructural Study on the Parenchymal Cell of Korean Planaria (Dugesia japonica) (한국산 플라나리아(Dugesia japonica Ichikawa et Kawakatsu) 유조직의 미세구조에 관한 연구)

  • 장남섭
    • The Korean Journal of Zoology
    • /
    • v.30 no.1
    • /
    • pp.53-70
    • /
    • 1987
  • The morphological study on the parenchymal cells in the adult planaria performed to observe their cytochemical and ultrastructural characteristics. The results are as follows. Nine types of cells are found in parenchyma. 1. Free parenchymal cell: These cells contain several chromatoid bodies around the nucleus. Heterochromatins are evenly dispersed in large nucleus. These cells are abundant in free ribosomes. 2. Fixed parenchymal cells: These cells have well-developed granular endoplasmic reticulum, mitochondria and Golgi complex but they contain the cytosols exhibiting electron-lucencies. 3. Rhabdite-forming cells: These cells contain the electron-dense rhabdite granules of up to about 0.3 x 0.9 $\mu$m in size. Rhabdite-forming cells have well-developed cell organelles, granular endolplasmic reticulum, mitochondria and Golgy complex. 4. A-type of basophilic granule cells: These cells contain irregularly-shaped granules exhibiting alcianophilia. These granules surrounded by a limited membrane, approximately 1.4 x 0.7 $\mu$m in size, are accumulated in the cytoplasm. 5. C-type of basophilic granule cells: These cells contain electron-dense granules of less than 0.2 $\mu$m in size, which exhibit PAS- positive reaction. This type of granule is also found in the muscle layer of parenchyma. 6. D-type of basophilic granule cells: This type of granule cell occurs only in the parenchyma around reproductive organ. The granules have cytochemical characteristics that they exhibit strongly positive reaction with PAS and weakly eosinophilic property. These electron-dense granules, which are 0.2 to 0.6 $\mu$m in length, have oval shapes. 7. E-type of basophilic granule cells: These cells are found only in the parenchyma around re productive organ. The granules contained in a small number in the cell, exhibit PAS-positive reaction and have an average size of 0. 2pm. 8. Eosinophilic granule cells: These cells contain a large number of eosinophilic granules which have relatively diverse sizes from 0.3 x 0.2 to 0.8 x 0.4 $\mu$m. Most of granules are round or irregularly-shaped and highly electrondense. These cells have an array of well-developed granular endoplasmic reticulum of which cisternae are distened. 9. Transparent granule cells contain electron-lucent granules which exhibit negative reactions with three kinds of cytochemical methods used in this experiment.

  • PDF

Electron Microscopic Study on the Rabbit Inferior Lacrimal Glands (토끼 아래눈물샘의 미세구조에 관한 전자현미경적 연구)

  • Park, Young-Hee;Ahn, E-Tay;Ko, Jeong-Sik;Park, Dae-Kyoon;Kim, Myeong-Soo;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.37 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • The lacrimal gland are compound tubule-acinar glands. The main lacrimal function is the production of the aqueous layer, the thickest and major constituent of the precorneal tear film. The lacrimal gland also has an important function in the defense system of the ocular surface, forming a part of the conjunctival-associated hymphoid tissue. The ultrastructural characteristics of the lacrimal gland of the rabbit were described. The lacrimal tissues of rabbits were processed through the conventional techniques for transmission electron microscopy. The secretory portions consisted of three cell types: 1. Serous cells with electron dense secretory granules. 2. Seromucous cells containing variable moderately electron dense secretory granules with flocculent material. 3. Mucous rolls containing mucous secretory granules. The serous cells were situated at the basal portion of acini, and they contained electron dense granules of variable densities and sizes. The seromucous cells contained a few protein secretory granules and more mucous secretory granules. The mucous cells contained even fewer protein secretory granules and exclusively mucous secretory granules. The epithelium of the intralobular ducts showed secretory granules, junctional complexes, and large basolateral intercellular spaces with lateral folds. These study might be helpful in determining inter-relationships, similarities and differences among the orbital glands of various physiological or pathological conditions.

Transmission electron microscopic findings of the tribocytic organ of Fibricola seoulensis (Fi'bricola seoulenis 조직융해구의 투사전자현미경 소견)

  • 송호복
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.315-320
    • /
    • 1993
  • We observed ultra-structure of the tribocytic organ of Firicola seoulensis with transmission electron microscope. Microvilli are observed on the surface of the tribocytic organ. Below the muscle layer, we can find three types of cells. Type I cell has electron lucent cytoplasm with a few granules, while type II cell shows electron dense cytoplasm and the particulate granules. Type III cell's electron dense cytoplasm possesses many granules. Of the above three cells, Type I and II cells are believed as tegumental cells. Type III cells are thought as glandular cells specific to the tribocytic organ. This finding on also explain the secretory function of the tribocytic organ of f seoulensis.

  • PDF

The Ultrastructure of the Cutaneous Pigment Cells in the Amphibia (양서류 피부 색소세포의 미세구조)

  • 김한화;노용태;지영득;문영화
    • The Korean Journal of Zoology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 1981
  • The ultrastructures of the pigment cells in the Asiatic land salamander (Hynobius leechi) dorsal skin were obtained by means of electron microscope. The results were as follows; 1. The pigment cells of the epidermis consisted of the melanocytes in the germinal layer and of the melanophores distributing to the keratinocyte layer. The traits of these cells in the epidermis were as follows: A. The nuclei of the melanocytes were round or oval in shape and appeared as partly small or large infoldings of the nuclear envelope. B. Rough-surfaced endoplasmic reticulums and Golgi complexes were well developed in infranuclear cytoplasm. Many ribosomes were mainly distributed around the perinuclear portion. C. The melanosomes of the melanocytes were observed as a found or an oval shape and strong electron-dense or less electron-dense melanosomes were observed. D. The infoldings of the nuclear envelope in the melanophore were partly found deeper than those of the melanocyte. The cytoplasm of the melanophore filled with melanosomes caused organelles not to be observed in that. 2. The pigment cells in the dermis were composed of the xanthophores just beneath basement membrane and the melanophores in the connective tissue. The traits of these cells in the dermis were as follows: A. The xanthophores contained round or oval vesicles, and these vesicles were divided into 6 types (type I pterinosome, type II pterinosome, type III pterinosomes, type iv pterinosome, type V pterinosome, type VI pterinosome). B. Most of the nuclei of the melanophores in the dermis were elongate in shape, and a portion of the nuclear envelope was deep infolded. C. Becuase the cytoplasm was filled with the melanosomes of the same electron-density, organelles were not observed in the cytoplasm. D. Two processes of the melanophore in the dermis extended in parallel with a xanthophore and the cytoplasm in those processes were filled with the melanosomes.

  • PDF

The Ultrastructure of the Cutaneous Cells in Rana temporaria dybowskii Guenther (북방산개구리 피부 색소세포의 미세구조)

  • Kim, Han-Hwa;Chi, Young-Duk;Moon, Young-Wha
    • The Korean Journal of Zoology
    • /
    • v.28 no.3
    • /
    • pp.137-150
    • /
    • 1985
  • The dorsal skin of Rana temporaria dybowskii Guenther was examined under electron microscope. The results of the fine structures in the xanthophores, iridophores and melanophores were as follows: Xanthophores: Xanthophores were filled with pterinosomes and carotenoid vesicles. Type I pterinosomes had a clear limiting membrane. Type II pterinosomes had the inner fibrous structures. Tyep III pterinosomes were characterized by a few superficial lamellae and type IV pterinosomes by multiple concentric lamellae. Especially typical type II and type III pterinosomes were evenly distributed in the cytoplasm. Iridophores: Iridophores were situated between a xanthophore and a melanophore in the outer part of the dermis just below the basement membrane. Iridophores were filled with reflective platelets, each of which is rectangular and convex lens-like in shape. These platelets were closely contiguous and leave no interspace between them. Endoplasmic reticulum and a few mitochondria were observed in the supranuclear cytoplasm. Melanophores: Dermal melanophores contained numerous melanosomes. The dendritic precesses of the melanophore containing the melanin granules extented up the lateral sides of the iridophore. Epidermal melanophores were filled with melanin granules which appered as the same electron density. A few melanin granules were observed in a cornified surface cell.

  • PDF

Genome-wide Association Study of Berry-related Traits in Grape Seedlings (포도의 교배집단을 이용한 과립 형질에 대한 유전체 전장 연관 분석)

  • Ryu, Hyang Hwa;Hur, Youn Young;Im, Dong Jun;Kim, Su Jin;Park, Seo-Jun;Lee, Dong hoon;Choi, Kyeong Ok
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.19-19
    • /
    • 2019
  • 유전체 전장 연관분석 (GWAS)은 단일염기다형성(SNP)의 유전자형과 표현형 간의 통계적인 연관성을 분석함으로써 품종 선발용 SNP Marker 개발에 응용되고 있다. 본 연구에서는 Tano Red와 Ruby seedless 교배실생 278 계통을 대상으로 여러 과실 특성에 따른 관련 SNP를 동정함으로써 육종 선발에 필요한 DNA marker 개발에 필요한 기초 유전 자료를 얻고자 하였다. 한 계통 당 5~10개의 포도알을 선택하여 과립중, 과육탄성, 과피탄성, 과육경도, 과피경도, 과립당 종자갯수, 과립당 종자무게 및 인장강도를 측정하였다. 각 개체는 Genotyping by sequencing (GBS) 방법으로 Sequencing하여 Reference genome (Vitis vinifera PN40024 12X v2.)과 mapping 하였다. MAF (Minor allele frequency) >5%, Missing Data <30% 의 조건을 가진 SNPs 만 1차 선발하여 TASSEL과 GAPIT 프로그램으로 GWAS 분석을 하였다. Manhattan plot 결과 과립중 형질에서는 33개, 과립당 종자무게 25개와 인장강도에서는 20개의 통계학적으로 유의한 SNPs 가 선발되었고, 특이적으로 이들 모두 18번 염색체에서 발견되었다. 그러나 나머지 형질에서는 유의한 차이를 보이는 SNPs를 선발하지 못하였다. 과실의 인장강도는 수확 후 저장성과 유통과정에 영향을 미치기 때문에 Marker 개발을 통한 품종선별이 중요하다. 향후 이러한 특성과 본 연구를 통해 동정된 SNPs 의 상관관계를 구체적으로 연구하여 Marker 개발에 활용하고자 한다.

  • PDF

Fabrication of CVD SiC Double Layer Structure from the Microstructural Change Through Input Gas Ratio (입력기체비를 이용한 미세구조 변화로부터 화학증착 탄화규소의 복층구조 제작)

  • 오정환;왕채현;최두진;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.937-945
    • /
    • 1999
  • In an effort to protect a RBSC(reaction -bonded SiC) tube SiC films from methyltrichlorosilane(MTS) by low pressure chemical vapor deposition were deposited in hydrogen atmosphere on the RBSC(reaction-bonded SiC) substrates over a range of input gas ratio(${\alpha}=P_{H2}/P_{MTS}=Q_{H2}/Q_{MTS}$=1 to 10) and deposition temperatures(T=1050~1300$^{\circ}C$). At the temper-ature of 1250$^{\circ}C$ the growth rate of SiC films increased and then decreased with decreasing the input gas ratio. The microstructure of SiC films was changed from granular type structure exhibiting (111) preferred orientation in the high input gas ratios to faceted columnar grain structure showing (220) in the low input gas ratios. The similar microstructure change was obtained by increasing the deposition temperature. These results were closely related to a change of deposition mechanism. Double layer structure having granular type and faceted ciolumnar grain structure from the manipulation of mechanism. Double layer structure having granular type and faceted columnar grain structure from the manipulation of the input gas ratio without changing the deposition temperatue was successfully fabricated through in -site process.

  • PDF

Production of spherical granule type yogurt with improving convenience and preservation (편리성 및 저장성이 증진된 구형과립 요구르트 제조)

  • Shin, Myung-Gon
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • Yogurt contains many microorganisms that are beneficial to human health, and is a probiotic that supplies many nutrients such as calcium and protein. It is difficult to safety preserve for a long time because it possesses a high content of water. To address this problem, powdered "instant" yogurt has been developed, but it has flaws low flowability and solubility. Therefore, yogurt was granulated using a fluidized bed granulator to increase flowability and solubility. The fluidized bed granulator was designed by using response surface methodology (RSM), whose variables were feeding rate (FR), atomization air pressure (AP) and product temperature (PT). After being granulated, the yogurt was analyzed for yield and lactic acid bacteria count. The maximum yield of yogurt granules was 79.42%, at FR of 0.54 mL/min, AP of 2.64 kPa, and PT of $58.18^{\circ}C$, and the colony count for lactic acid bacteria was more than $6log^{10}\;CFU/g$. Therefore, spherical granulation of yogurt using a fluidized bed granulator could be used for making convenient probiotic products with improved flowability and solubility.