• Title/Summary/Keyword: 과대하중비

Search Result 36, Processing Time 0.024 seconds

Effect of Low Temperature and Single Overload on Fatigue Crack Growth Behavior of Cr-Mo Steel Weldments (Cr-Mo강 용접부의 피로균열 성장거동에 미치는 저온도와 단일과대하중의 영향)

  • Lim, Jae Kyoo
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 1996
  • 일정진폭하중과 과대하중비 2.5의 단일 인장과대하중에 의한 4140강 용접부 의 피로균열성장거동을 실온과 -45.deg.C의 저온에서 피로시험과 파면관찰을 통하여 고찰하였다. 이때, 용접부 미시조직의 영향을 평가하기 위해 모재(parent metal), 열영향부(as-welded HAZ), 열처리된 열영향부(PWHT HAZ)로 나누어 응력비 0과 0.5로 CT시험편을 이용하여 피로시험을 실시하였다. 피로균열성장거동은 재료의 미시조직과 온도변화보다는 응력비에 크게 영향을 받았으며, 단일 과대하중에 의한 피로균열성장 지연효과가 모든 재료에서 상당히 크게 나타났다. 전자현미경에 의한 피로파면 관찰 결과, 실온에서는 연성의 스트라이에이숀과 -45.deg.C에서는 의벽개파면과 같은 피로 균열성장거동을 나타내고 있다.

  • PDF

7075-T73 알루미늄 합금의 피로 균열진전의 지연현상과 이의 기구

  • 김정규;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.883-891
    • /
    • 1990
  • 본 연구에서는 항공기 구조용 재료로서 널리 사용되고 고장력 7075-T73 알루 미늄합금을 준비하고, 균열깊이 a/W변화에 따른 단일과대하중후의 지연현상을 기준응 력확대계수범위 .DELTA.K$_{b}$ 및 과대하중비 %O.L. 과 함께 검토하였다.

Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation (가공경화지수가 피로균열 지연거동에 끼치는 영향)

  • 김상철;강동명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1193-1199
    • /
    • 1990
  • Effects of strain hardening exponents on the behavior of fatigue crack propagation are experimentally investigated. The retardation effect of fatigue crack propagation after single overloading is investigated in relation to strain hardening exponent and crack closure. A relationship between crack opening ratio and strain hardening exponents is inspected through an examination of the crack closure behavior. An empirical equation relating retardation effect of fatigue crack propagation after single overloading, percent peak load and strain hardening exponent of materials is proposed.

An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo;Hong, Suck-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF

Effects with the Variation of Single Overload mode on Propagation Behavior of Fatigue Crack (단일과대하중의 작용모드 변화가 피로균열의 전파거동에 미치는 영향)

  • 송삼홍;이정무;신승만;홍석표;서기정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1508-1512
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I and mixed-mode loading overloading afterwards. We examined the observed deformation aspects, the variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. Also the loading modes of variable and constant amplitude loads have influence on the retardation behavior of fatigue cracks.

  • PDF

The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy (7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델)

  • 김정규;송달호;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1605-1614
    • /
    • 1992
  • The effects of % overload (% O.L), baseline stress intensity factor range (.DELTA. $K_{b}$) and dimension-less crack depth (a/W) are examined for the retardation behaviors after a single overload and high-low block loads in 7075-T73 aluminum alloy. And wheeler model, which is one of the fatigue life prediction models, is modified to predict retardation life using these test results. The retardation cycles( $N_{d}$) increased with a decrease in a/W and an increase in % O.L. and (.DELTA. $K_{b}$) These effects are more severe after high-low block loads than single overload. In the case of single overload, the main mechanisms of the retardation are the crack closure and the relaxation of K due to crack branching. But in the case of high-low block loads, that of the main mechanism is the crack closure caused by the accumulated compressive residual stree at the crack tip, which is related with the contact of fracture surfaces. Test results were multiple regression analyzed and got regressed shaping correction factors, (n)$_{REG}$, as function of %O.L., a/W and (.DELTA. $K_{b}$) Wheeler model is modified by using these (n)$_{REG}$. The number of delay cycles calculated by modified Wheeler model were in good agreement with the test results of this study.y.udy.y.y.y.

A Study on the Effect of the Overload Ratio on the Fatigue Crack Growth Retardation (과대하중비가 균열성장지연에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Sung-Chan;Shim, Chun-Sik;Park, Jin-Young;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.306-311
    • /
    • 2003
  • A growing fatigue crack is known to be retarded on application of an overload cycle. The retardation may be characterized by the total number of cycles involved during retardation and the retarded crack length. The overload ratio plays an important role to influence the retardation behavior. The objective of the present investigation is to study the effect of different overload ratio on the retardation behavior. For DENT(double edge notched tension) specimens and ESET(eccentrically-loaded single edge crack tension) specimens, fatigue crack growth tests are conducted under cyclic constant-amplitude loading including a single tensile overloading with different overload ratios. The proposed crack retardation model predicts crack growth retardation due to a single tensile overloading. The predictions are put into comparison with the experimental results to confirm the reliability of this model.

  • PDF

The Fatigue Crack Growth Behavior of Laser Welded Sheet Metal Due to Single Overload (과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 조우강;오택열;곽대순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.854-858
    • /
    • 2002
  • In this study, Fatigue crack growth behavior of the laser welded sheet metal due to a single overload was investigated. From Fatigue crack propagation test, it was observed that the retardation of fatigue crack growth has been more effective in the welded specimen than in the base metal. And if the distance between the welded part and the position of overload is too close the retardation of fatigue crack growth at the welded part has been decreased. From FEM analysis, it was observed the retardation has been more effective compressive residual stress than plastic zone.

  • PDF

A Study on Serviceability of Oversized Bolt Hole in High-Tension Bolt Joint Subjected to Bending (휨을 받는 고장력볼트 체결부에서 과대공에 따른 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Suk-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2831-2836
    • /
    • 2009
  • If a design load exceeding the frictional force of the contact surface is applied to the connection of steel members using a high-tension bolt friction joint, sliding occurs and the connection of the steel members bears the design load through the shear strength and bearing strength of the bolt and the base plate. The sliding distance can be determined by the tensile force of the bolt, the friction coefficient of the contact surface, and the position of the bolt in the base plate hole. This study measured and analyzed sliding according to standard bolt hole and oversize bolt hole when pure bending moment and tensile force were applied to high-tension bolt joints with different sizes of bolt holes made in the base plate and the cover plate. In a high-tension bolt joint receiving pure bending moment and tensile force, the load causing sliding in an oversize bolt hole was $74\sim94%$ of that in a standard bolt hole. In a member receiving tensile force, the sliding load ratio was lower when the size of oversize bolt holes in the base plate and the cover plate was large. In addition, the size of the oversize bolt hole in the base plate was more closely correlated with the change of sliding loadthan the size of the oversize bolt hole in the base plate.

Prediction of Crack Growth Retardation Behavior by Single Overload (단일 과대 하중에 의한 균열 성장 지연 거동 예측)

  • 송삼흥;최진호;김기석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.928-932
    • /
    • 1996
  • Single overload fatigue tests with overload sizes ranging from 50% and 100% have been performed to investing ate the fatigue crack growth retardation behavior. A modified and experimental method of Willenborg's model for prediction of crack growth retardation behavior has been developed, based on evaluations of equivalent plastic zone size (EPZS) changing its size along the overload plastic zone boundary. The minimum crack growth rates of each overload size are linearly decreased with overload size increasing, but fatigue lives extended by single overload are increasing much more unlike the crack growth rates. Comparisons of crack growth behavior predicted by EPZS model and Willenborg model have shown that the EPZS model accounts for overload effects better than Willenborg model. These effects include delayed retardation, large retardation region, minimum crack growth rate, and the increase rate of crack growth rate in the region crack growth rate recovered.

  • PDF