• Title/Summary/Keyword: 공항 이동지역 관리

Search Result 6, Processing Time 0.019 seconds

Study on the Relationship among Airport Safety Management System, Safety Knowledgy, and Safety Behaviour - Case of Incheon International Airport Airside Workers - (공항안전관리시스템(SMS)과 안전지식 및 안전행동의 관계에 대한 연구 - 인천공항 이동지역종사자를 중심으로 -)

  • Na, In Kie;Yoo, Kwang-eui
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • 안전관리시스템(Safety Management system, SMS)은 국제민간항공기구(ICAO)에서 정의된 서비스제공자의 의무사항으로 우리나라의 공항 분야는 2005년 부터 구축되어 현재까지 운영되고 있다. 항공교통량 증가에 따른 사고의 발생가능성 증가에 대응하기 위해 채택된 새로운 체계가 SMS라는 점을 고려할 때, 공항 SMS는 항공사와 조업사 등 관련 업체와 연계되며 이동지역에서 근무하는 종사자의 행동에도 긍정적인 영향을 미칠 수 있어야 할 것이다. 본 연구는 인천공항이 실행하고 있는 외부지향적인 SMS활동이 항공사, 조업사 등에 소속된 이동지역 종사자의 지식과 행동에 미치는 영향에 대해 연구하고자 하였다. 총 593명의 종사자가 조사에 참여하였으며, 공항SMS는 안전지식을 통해 안전행동에 영향을 미치는 것으로 나타났다. 이 연구 결과는 공항이 조업사 등 별개의 업체 종사자에 대한 안전정책 설정을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

Utilization of AeroMACS Infrastructure for Airports and Airlines (공항 및 항공사를 위한 AeroMACS 인프라 활용 연구)

  • Lim, In-Kyu;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.373-379
    • /
    • 2019
  • AeroMACS spectrum is a national resource internationally allocated by ITU at WRC-07. AeroMACS is an airport broadband mobile communication infrastructure based on WiMAX-based IEEE 802.16e that enables real-time video, graphics, voice, and high-speed data transmission. With the approval of ICAO's development technology standards in 2008, 50 airports in 11 countries have already completed the testing of D-TAXI or A-SMGCS technology using the AeroMACS infrastructure in 2019, starting in the United States in 2009. With many advantages in safety and convenience in terrestrial telecommunications operations, the system is becoming an area of performance improvement for airport operations in accordance with ICAO's ASBU plan. This paper examines the current status of domestic development of AeroMACS and lists service areas applicable to airlines and operators. It also seeks to promote safe and efficient next-generation airport mobile communication system services by presenting feasible partners management in the mobile area and use of aircraft communication systems for active technology development.

Basic System Architecture Design for Airport GIS Service Models (Airport GIS 구축을 위한 서비스모델 설계에 관한 연구)

  • Sim, Jae-Yong;Lee, Tong-Hoon;Park, Joo-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.82-94
    • /
    • 2008
  • Airport GIS is a comprehensive information system to improve security and efficiency of airport. At the initial stage to make it real, the current status of domestic and international regulations along with relevant standardization bas been reviewed. Gimpo Airport becomes a test-bed to get some ideas about how to bring the airport GIS into workflow by building service model and basic design based on current status and demand analysis of the airport. The 6 service models primarily brought into the project are as follows: (1) Local vehicles safety management in airside, (2) Intelligent traffic control between flights and vehicles at main cross points, (3) Dynamic safety management against FOD in airside and breakage on pavement, (4) Special support vehicle management such as deicing remotely controlled, (5) Response and support for fire vehicles and ambulances of signatory institutions in emergency. The upcoming research topic aims at drawing a specific design and building integrated system in the future.

  • PDF

Ultra-Wideband(UWB) Wireless Data Communications for Airport and Aircraft (공항 및 항공기내 초 광대역 무선 데이터 통신 활용)

  • Im, In-Gyu;Gang, Ja-Yeong
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.83-87
    • /
    • 2015
  • 미국 국방부에서 군사용으로 사용되던 수 GHz 대역의 초 광대역 주파수 스펙트럼을 미국연방통신위원회(FCC)에서 민간에 개방하면서 여러 활용 기술이 개발 되고 있다. 소비전력이 적고, 고속통신 및 방해 전파에 강하다는 특성을 갖고 있으며 또한 작은 위치 검출 오차로 정밀도가 높으나 거리가 길어지면 급속도록 떨어지는 속도로 인하여 근거리 통신으로 활용 검토 되고 있다. 따라서 공항 및 항공기내 지역에서 초 광대역 주파수 특성을 활용하여 적용 가능한 항공기 익단충돌방지시스템, 항공기와 고속 데이터 전송, 항공기 내의 무선 백본 시스템 활용 및 공항 지역의 이동체 위치 정보 관리 등 다양한 항공 서비스 업무에 적용 가능함을 알 수 있었다.

  • PDF

GNSS-based Parallel Approaches to Increase Airport Capacity (공항용량 향상을 위한 위성항법기반 평행 접근 연구)

  • Shin, Gwon-Sang;Yuh, Song-Hee;Lee, Hyung-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Simultaneous parallel approaches in all weather conditions should be applied to manage efficiently increasing volume of air traffic flow and solve the problem of delayed arrivals. But All of the airports which have closely-spaced parallel-runways in Korea don't meet the interval-standards for IFR parallel approaches. In that regard, more accurate and safer System should be applied for the Korean airports. GNSS was adopted as an international standard of the next-generation navigation system and many studies and master plans have been activated by stages in Korea. In this paper, the current state of the domestic airports will be analyzed focusing on the interval of parallel runways and future specification of both flight operation system and air-side management will be recommended.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.