• Title/Summary/Keyword: 공학적 성질

Search Result 1,079, Processing Time 0.025 seconds

A Study on the Physical Properties of Sawdust-Board Combined With Reinforce Material (보강재료(補强材料)를 첨가(添加)한 톱밥보드의 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 1983
  • This experiment was carried out to improve the physical and mechanical properties of sawdust-board by combining with reinforce material, that is, plastic wire screen and steel wire screen. In experiment results, the density of sawdust-board reinforced with three steel wire screens was highest and its bending strength was also highest. Wastepaper-5% mixed sawdust-board showed as high bending strength as other boards, and therefore the possibility of using wastepaper as raw materials for boards. The sawdust-board with steel wire screen was not ruptured immediatedly after having been deformed by static loading. However, plywood showed higher bending strength than the reinforced sawdust-boards.

  • PDF

Mechanical Properties of Wood-Fiber Thermoplastic Composites (목섬유(木纖維)와 열가소성(熱可塑性) 플라스틱 복합재료(複合材料)의 기계적(機械的) 성질(性質))

  • Park, Byung-Dae;Lim, Kie-Pyo;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.46-53
    • /
    • 1994
  • This study was conducted to investigate a feasibility of manufacturing wood fiber thermoplastic composites and to evaluate their mechanical properties. Wood fiber as a potential reinforcing filler was compounded with two thermoplastics (polypropylene and high density polyethylene) in high intensity thermokinetic plastic mixer aided with a wetting agent. It was found that wood fiber thermoplastic composites could be manufactured by injection molding process. The tensile and flexural strength of injection molded specimens were improved greatly with increasing wood fiber concentration. Tensile and flexural modulus increased proportionately with wood fiber concentration. Wood fiber provided reinforcement with thermoplastics in terms of strength and modulus. However, the percent elongation at break and energy to break were reduced with increasing wood fiber loadings. Impact strength also showed similar trend.

  • PDF

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast - III. Isolation and characterization of fusant between S. diastaticus and C. tropicalis (Amylase분비효모와 alcohol발효효모의 세포융합에 의한 균주의 개발 - 제3보. S. diastaticus와 C. tropicalis 간의 세포융합 및 융합체의 성질-)

  • 서정훈;권택규;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.359-363
    • /
    • 1986
  • S. diastaticus hydrolysised $\alpha$-1.4 linkage of the starch and was known fermenting yeast strain, but poorly hydrolized $\alpha$-1.6 linkage of the starch. To improve the starch fermentation ability of yeast, we tried that protoplast fusion between S. diastaticus and C. tropicalis and finally two starins of fusant (FPDC42, FPDC43) were obtained. C. tropicalis well hydrolysis both $\alpha$-1.4 and $\alpha$-1.6 linkanges in the starch. The protoplast of parental auxotrophic cells were fused in the presence of 10mM CaCl$_2$ and 35% of polyethylene glycol (M. W. 4,000). The fusion frequency was 10$^{-5}$ to 10$^{-6}$. Properties of the fusants(genetic stability, assimilation of carbon sources, random spore formation, copper resistance, NaCl tolerance, DNA content, cell size and growth rate) were investigated.

  • PDF

Engineering Properties of Uncemented Mudrock from Yeoju Area, Gyeonggi-Do (경기도 여주지역 미고결 이암의 공학적 특성)

  • Ban, Hoki;Lee, Huiyoun;Bae, Kyujin;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.53-58
    • /
    • 2015
  • Engineers should take great care of characterizing the engineering properties of mudrock, because the uncemented mudrock can be considered as a hard rock in appearance. Therefore, the mudrock samples obtained from the cut slope in Gyeongki-do were tested to evaluate the strength characteristics of uncemented mudrock in this study. The performed tests are index properties, slake durability, and swelling tests for the classification of the mudrock for engineering practice. To evaluate the effect of water on the engineering properties of the uncemented mudrock, resonant column, triaxial compression and direct shear tests with various water contents were performed. With the increasing water contents, stiffness at very small to small strain region and the cohesion value of the strength parameters decrease. Based on the test results, engineers should take great care of evaluating the engineering properties of uncemented mudrock.

Thermal Properties of Corn-Starch Filled Biodegradable Polymer Bio-Composites (옥수수 전분을 충전제로 첨가한 생분해성 고분자 복합재료의 열적성질)

  • Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong;Lee, Young-Kyu;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.29-38
    • /
    • 2004
  • In this study, we investigated the thermal properties of corn-starch filled polybutylene succinate-adipate (PBS-AD) bio-composites. Thermal analysis (TA) is used to describe the analytical method for measuring the chemical property and weight loss of composite materials as a function of temperature. The thermal stability of corn-starch was lower than that of pure PBS-AD. As corn-starch loading increased, the thermal stability and degradation temperature of the bio-composites decreased and the ash content increased. It can be seen that the degree of compatibility and interfacial adhesion of the bio-composites decreased because of the increasing mixing ratio of the corn-starch. As the content of corn-starch increased, there was no significant change in the glass transition temperature (Tg) and the melting temperature (Tm) for the bio-composites. The storage modulus (E') and loss modulus (E") of the corn-starch flour filled PBS-AD bio-composites were higher than those of PBS-AD, because of the incorporation of corn-starch increased the stiffness of the bio-composites. At higher temperatures, the decreased storage modulus (E') of bio-composites was due to the increased polymer chain mobility of the matrix polymer. From these results, we can expect that corn-starch has potential as a reinforcing filler for bio-composites. Furthermore, we recommend using a coupling agent to improve the interfacial adhesion between corn-starch and biodegradable polymer.

Improvement of Particleboard Manufacturing Process and its Properties Using Powdered Tannin Adhesives (분말상 탄닌수지를 이용한 파티클보드 제조기술 및 물성개선)

  • Kang, Seog Goo;Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • This study was carried out to improve the properties of powdered tannin adhesive(PT) by adding liquid tannin resin(LT) to PT in the manufacture of particleboard. Mixing the LT to PT from 50% to 100% by weight did not show any difference in particleboard properties, but the higher the powdered tannin resin ratio, the lower the properties of the board. The proper ratio of PT to LT was 30:70 for the improvement of PT-particleboard, unless LT lower than 70%. Internal bonding strength was in proportional to the amount of LT. Mixing amino adhesives and PT did not show any improvements in mechanical and physical properties of the board but they only acted as scavenger for the free formaldehyde.Manufacturing particle board with the adhesive of 30:70 (PT:LT) and by using double blender resulted in high-performance products of E0 level of formaldehyde emission with high water resistance (U type; below 12%, M type; below 25%), as well as saving chip drying energy.

Effects of Finger Joint and Strength of Lamination on the Estimation of Strength Properties of Glulam (집성재의 강도적 성질 예측에 대한 핑거 조인트와 라미나의 강도의 영향)

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.8-17
    • /
    • 2000
  • Structural glued laminated timbers were manufactured from Japanese larch(Larix leptolepis) lumber. The effect of various factors, such as finger joint, strength of lamination, on the strength properties of glulam was investigated. When only MOE of lamina was used as input variable for the estimation of strength properties of glulam, the deviations between actual and simulated results were increased with the number of lamination, because the effects of variance of lamina properties on the strength estimation of glulam were cumulated with the number of lamination. Therefore, to estimate the MOR of glulam more careful approach was needed. Besides, both MOE and MOR of lamination were used as input variable to compare the effect of input variable. In the case of finger jointed lamination was located in tension zone, MOE of glulam was some effected, because of the variation of MOE of lamination and the deficiency of information for knot. In the case of finger jointed lamination wasn't located in tension zone, more exact estimation was possible than the case of finger jointed lamination was located in tension zone. From the results, it was concluded that more exact estimation of strength properties of glulam could be obtained by considering effects of both finger joint and knot.

  • PDF

Magnetic Properties of Electrodeposited Iron and Cobalt on Porous Aluminum Oxide Layer (다공성 알루미늄 양극산화 피막에 도금된 철 및 코박트의 자기적 성질)

  • Kim, K. H.;Kang, T.;Sohn, H. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 1990
  • The magnetic properties of electrodeposited iron and cobalt films on porous aluminum oxide film were examined. There exists perpendicular magnetic anisotropy due to the shape anisotropy. The coercivity and squareness ratio of films were strongly dependent on deposited particle diameter. The effect of packing fraction on squareness ratio was also apprecible. Unlike the iron-deposited films, the magnetic properties of cobalt films were changed by preferred orientation because of it's large crystal ansotropy constant.(about 10 times of Fe) The Fe deposited films were found to be more suitable for perpendicular magenetic recording media bacause perpendicular coercivity, squareness ratio and the ratio of perpendicular coercivity to horizontal ones of iron films are greater than those of cobalt films.

  • PDF

A Study on Drainage Performance of Domestic Plastic Board Drains and Recovery of Discharge Capacity by Vacuum Effect (국내 PBD재의 배수성능과 진공효과에 의한 통수능력 향상에 관한 연구)

  • 박영목
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.39-54
    • /
    • 1997
  • Laboratory testings were carried out on plastic board drains (PBDs) using large scale test apparatus to evaluate the physical properties and the drainage performance. The test results reveal that the domestic products of PBDs are well compared with the foreign prod acts as far as the quality and drainage performance are concerned. It has also been confirmed that the discharge capacity decreases with time in such a way that the air bubbles are entrapped inside kinky PBDs and these air bubbles block the water flow through PBDs. It has been found that the vacuum pressure iseffectively applicable to recover the discharge capacity affected by the entrapped air bubbles.

  • PDF

Electrical Properties of Silicon Implants in Cr-Doped GaAs (실리콘을 주입한 크롬이 도핑된 GaAs의 전기적 성질에 관한 연구)

  • 김용윤
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.50-55
    • /
    • 1983
  • A comprehensive study of the electrical properties of low-dose Si implants in Cr-doped GaAs substrates has been made using the Hall-effect/sheet-resistivity measurement technique for various ion doses and annealing temperatures. The samples were implanted at room temperature and annealed with silicon nitride encapsulants in a hydrogen atmosphere for 15 minutes. H-type layers were produced at all dose levels investigated, and the optimum annealing temperature was 850$^{\circ}C$ for all doses. The highest electrical activation efficiency was 89% for Cr-doped GaAs substrates. Depth profiles of carrier concentrations and mo-bilities are highly dependent upon ion dose and annealing temperature. Significant im-plantation damage still remains after an 800$^{\circ}C$ anneal, and a 900$^{\circ}C$ anneal produces signi-ficant outdiffusion as well as indiffusion of the implanted Si ions.

  • PDF