• Title/Summary/Keyword: 공진상황

Search Result 49, Processing Time 0.023 seconds

A Design of Passenger Detection and Sharing System(PDSS) to support the Driving ( Decision ) of an Autonomous Vehicles (자율차량의 주행을 보조하기 위한 탑승객 탐지 및 공유 시스템 개발)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.138-144
    • /
    • 2020
  • Currently, an autonomous vehicle studies are working to develop a four-level autonomous vehicle that can cope with emergencies. In order to flexibly respond to an emergency, the autonomous vehicle must move in a direction to minimize the damage, which must be conducted by judging all the states of the road, such as the surrounding pedestrians, road conditions, and surrounding vehicle conditions. Therefore, in this paper, we suggest a passenger detection and sharing system to detect the passenger situation inside the autonomous vehicle and share it with V2V to the surrounding vehicles to assist in the operation of the autonomous vehicle. Passenger detection and sharing system improve the weighting method that recognizes passengers in the current vehicle to identify the passenger's position accurately inside the vehicle, and shares the passenger's position of each vehicle with other vehicles around it in case of emergency. So, it can help determine the driving of a vehicle. As a result of the experiment, the body pressure sensor applied to the passenger recognition sub-module showed about 8% higher accuracy than the conventional resonant sensor and about 17% higher than the piezoelectric sensor.

New Approach to the Framework for Making the S&T Information Infrastructure in Complex System (복잡계 상황에서의 새로운 과학기술정보인프라구축의 틀 모색)

  • WON, DONG KYU;SUH, JEE HYUN
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.188-192
    • /
    • 2007
  • Today, the most pivotal issue in the national research and development, and national scientific and technical policy is to overcome uncertainties in the environment of technology development. The social and economic environment around us is at restricted uncertainty (complex system) where order and disorder coexist. Furthermore, the environment of technology development is more complicated. In order to bring about creativity in practices of technology development, we need a paradigm shift towards a new framework for the construction of the national scientific and technical information infrastructure, which entails a shift to creativity, self-organization and dynamic capability. The paradigm shift will lead the present scientific and technical information infrastructure which centers on information sharing, to move towards one that enables information coherence through self-organization. Thus, it is expected that the new Web 3.0 will provide a client-flexible analysis information system that will make information coherence and feedback possible. Through this system, the policy for the construction of a new scientific and technical infrastructure will evolve, which will bring about co-evolution of individual's knowledge through sharing of self-organizaed knowhow.

  • PDF

Development of Red-Tide Prediction Technique Using Quartz Crystal Oscillator (수정진동자를 이용한 적조예측 방법의 개발)

  • Kim, Byoung-Chul;Kim, Young-Han;Chang, Sang-Mok
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2004
  • The most important effects on algae multiplication are coming from maintaining the growth environment such as necessary nutrients and proper temperature, but it is difficult to adjust for every species individually. In this study, therefore, the environment is obtained using the local water where target organisms live, and their growth is promoted by raising the water temperature. A sensor to count the organism population is developed here. Because the early stage of a sudden increase of the algae population is detected using the sensor, it is available to predict the sudden increase of algae, a source of red tide.

Optimizing Method for Wireless Charging with Frequency Control (주파수 제어에 의한 무선 충전 최적화 기법)

  • Ahn, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.275-280
    • /
    • 2013
  • This paper presents an optimizing method for wireless charging system, specifically focused on the capsule endoscope applications. In order to increase the wireless power transfer efficiency of electro-magnetic resonance coupled coils, this paper investigates the impact factors of the power transfer efficiency in small battery capacity system and proposes a efficiency optimizing method based on frequency control. Simulation results show that the proposed efficiency optimal control method can effectively stabilize the wireless power transfer efficiency so as to successfully solve the main issue of transfer efficiency variation with distance and as well as parasitic element.

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.911-915
    • /
    • 2006
  • 가스히터의 연소로부터 발생하는 소음 및 진동의 주원인은 연소소음(combustion roar)과 연소진동음(combustion oscillation)이다. 연소음의 특징은 음압이 넓은 주파수대에 걸쳐 비교적 일정하게 분포하고 있다. 본 논문에서 언급하고 있는 가스히터 초기 조건에서 볼 수 있는 상황으로 소음레벨이 낮고 진동 문제도 발생하지 않는다. 반면 연소진동음은 연소실내 기체의 고유진동수에 대하여 버너계가 Positive Feedback을 일으켜 공진할 때 발생되는 소음 및 진동이다. 연소진동의 발생 원인은 앞서 지적한 바와 같이, 연소할 때의 연소 진동수와 연소실의 구조적 고유진동수가 일치하면 큰 진동 및 소음을 발생시킨다. 따라서 소음 및 진동을 해결 할 수 있는 방법은 두 개의 고유진동수가 일치하지 않도록 하는 방법을 강구하여야 한다. 첫 번째 방법으로는 버너에서 연료와 공기량의 비율을 변화 시켜 진동수를 변화 시키거나, 연료와 공기의 통로길이, 연소실내에서의 연료와 공기의 혼합속도를 변화 시키는 방법이 있다. 두 번째 방법으로, 연소실의 고유진동수를 변화 시키는 방법으로 연소실의 길이나 덕트의 길이를 변경시켜 고유진동수의 주파수를 변경시키는 방법이다. 본 논문에서는 연소실의 조건을 변경하여 공명을 회피하는 방법을 채택하였고, 좋은 결과를 얻을 수 있었다.

  • PDF

Verification and Analysis of Characteristics of Mechanical Pulsation for Combustion Stability Study in a Model Chamber (모형 연소기의 연소 불안정성 연구용 섭동 장치의 기능 검증 및 분석)

  • Min, Yong-Ho;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.28-30
    • /
    • 2012
  • A mechanical pulsator is manufactured for study of combustion instabilities in a model chamber with impinging-jet injectors. Artificial disturbance is generated by the device and thereby, artificial instability can be examined experimentally. A sample F(fuel)-O(dxidizer)-O-F impinging-jet injector is adopted for the test. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. Pressure fluctuation data, which is obtained from the dynamic pressure transducers installed in combustion chamber, is analyzed.

  • PDF

A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network (분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화)

  • Cho Nam-Deok;Kim Ki-Tae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.349-356
    • /
    • 2005
  • Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges (PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석)

  • Manseok Han;Min-Kyu Song;Soobong Shin;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

Controlled Low Strength Material for Emergency Restoration Using Bottom Ash and Gypsum (저회와 석고를 활용한 지반함몰 긴급복구용 고유동성 채움재 연구)

  • Lee, So-Yeon;Yoon, Hwan-Hee;Son, Min;Kong, Jin-Young;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.19-31
    • /
    • 2018
  • Recently the ground subsidence which seriously weakens the safety of cities tends to increase. The purpose of this paper is to develop the materials by using industrial by-products for the application to emergency restoration process in case of ground subsidence. In this paper the laboratory tests including pH test, initial setting test, unconfined compressive strength test, and flow test were performed in order to evaluate the design properties of Controlled Low Strength Material (CLSM). The field test was carried out for evaluating the performance for the early strength of CLSM and the workability for emergency restoration. Test results showed that the strength will be too high to re-excavate the ground when the cement ratio is more than 4%. The optimum mixing ratio appears to be most effective when the mixing ratio of the bottom ash and the gypsum is approximately 50:50 and the cement content is 2%.

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.