• Title/Summary/Keyword: 공종별 특화 이미지

Search Result 1, Processing Time 0.014 seconds

Investigating the Effects of Training Image Dataset's Size and Specificity on Visual Scene Understanding AI in Construction (건설현장 컴퓨터비전 AI 성능에 대한 학습 이미지 데이터셋 크기 및 특화성의 영향 분석)

  • Jinwoo Kim;Seokho Chi
    • Land and Housing Review
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • Visual scene understanding AI, a pivotal factor for digital transformation and robotic automation in construction, has primarily been researched under the hypothesis that the more training images, the higher the model performance. Alternatively, one can hypothesize that prioritizing activity-specific training images tailored to each construction phase would be more critical than merely enlarging the size of the dataset. This approach is particularly vital in dynamic construction environments where visual characteristics undergo significant changes across the construction phases, from earthmoving, foundation, and superstructure to finishing activities. In this background, we investigate the effects of a training image dataset's size and specificity on visual scene understanding AI in construction. We build an all-in-one, universal training image dataset as well as an activity-specific dataset, varying the number of training images. We then train vision-based worker detection models using each dataset and assess their performance in activity-specific, dynamic test environments. We analyze the optimal performance achieved in each test environment and how the model's performance varies depending on the dataset's size over the entire test phase. Our findings will help scientifically validate the dual hypotheses and lay a solid foundation for building and updating a training image dataset when developing a visual scene understanding AI model in dynamic construction sites.