Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.243-243
/
2020
본 연구는 장래 유입수질 변화로 해수담수화(Desalination) 역삼투압(Seawater Reverse Osmosis) 공정의 전력비 예측 모델을 개발하고 별도의 해수담수화 추가공정이 필요한지 검토하였다. 플랜트 시설은 한번 설치되면 오랜 기간 운영이 되고, 주요 공정의 시설물 변경이 어려우며, 특히 해수담수화 시설의 경우에는 생활용수 및 공업용수를 수요자에 상시 공급함으로서 중간에 추가 시설물을 증설하거나 변경하기가 쉽지 않다. 따라서 해수담수화 시설의 계획 초기부터 현재의 유입수질 및 장래의 수질 변화를 예측하여 해수담수화 공정을 계획하는 것이 필요하다. 금회 검토는 해수온도 및 염분도 변화를 고려하여 서해에 위치한 대산산업단지 해수담수화 시설의 해수담수화 공정 전력비를 예측하였고, 입력 자료(온도 및 염분도)는 국가해양환경정보통합시스템(MEIS, Marine Environment Information System) 22년 과거자료(1997~2018년)를 이용하였다. 개발된 모형에 적용하여, 해수담수화에 필요한 전력비의 변화를 예측할 수 있으며, 이를 바탕으로 해수담수화 시설물 공정계획을 검토할 수 있었다. 금회 연구에서는 장래 수질변화 예측모형의 결과를 기반으로 해수담수화 시설물 공정을 제시하였다는데 의의가 있다.
기존의 소성가공공정에서의 미세조직 예측 기술은 온도 및 외력에 의한 금속학적 변화를 모사하기 위해 다수의 실험에 기반한 경험적 모델링 작업이 요구되고 이를 구현할 수 있는 기계 및 재료적 지식 기반이 동시에 요구되기 때문에 현재까지는 신뢰성을 갖는모델 및 수치해석기술은 충분히 확보되지 못한 상태이다. 이러한 미세조직 예측기술의 정확도를 향상시키고자 하는 일환으로, 최근에는 매크로 스케일의 FE 해석과의 결합을 통해 소성가공공정과 이후의 열처리 공정에서의 정적 재결정 동적 재결정 상변태 변형유기변태 등 복잡한 미세조직 현상을 그 변화가 일어나는 실제 메조 스케일에서 예측하고자 하는 연구가 시도되고 있다. 본고에서는 그 중에서도 소성가공에서 발생하는 재결정 거동 예측에 주로 적용되고 있는 데조스케일 해석 기법과 매크로-메조 다단위 스케일 해석 기법의 국내외 연구 현황에 대해 알아보고자 한다. 또한, 이를 이용한 소성가공공정에서의 미세조직 예측 사례와 미세조직 예측기술의 전망에 대해 기술하고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.334-337
/
2004
차세대 생산 시스템(Next Generation Manufacturing System: NGMS)의 핵심 개념은 분산 생산 시스템과 다품종 소량의 유연 생산 시스템의 지원이다. 이러한 시스템의 구성을 위하여 실시간 데이터에 기반한 예측 모델이 필수적인데, 이러한 예측 기능을 통하여 생산공정의 관리와 운영, 특히 전체 공정관리를 효율적으로 수행할 수 있다. 한편, 공정으로부터 전송된 데이터는 특정한 형태의 지식으로 표현된다. 이러한 지식들은 시스템에 대한 다양한 정보를 가지고 있으므로 정보를 이용하여 시스템 상태를 빠르고 쉽게 진단할 수 있다. 공정 진단은 현재 공정 상태에서 생산되는 제품의 품질을 추정할 수 있는 정보로 활용된다. 본 논문에서는 이러한 개념이 바탕이 되어 공정관리 시스템을 설계하였다. 제안된 시스템의 적용 대상은 반도체 제조 공정의 단위 공정인 에칭 공정이다. 에칭 공정은 공정 중에 연속적인 검사가 수행되지 않고 최종 제품에 대한 검사가 수행되므로 불량 원인을 찾는 것이 쉽지 않다. 따라서 본 논문에서는 공정관리를 위한 의사지원시스템을 통해 공정의 연속적인 간접진단을 수행하고자 하였다. 본 연구에서 사용된 의사지원시스템은 각 공정에서 얻어지는 데이터와 경험적 지식을 토대로 공정시스템의 해석과 진단이 가능한 시스템이다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.215-215
/
2022
현재 국내 정수시설은 정수공정별 감시제어-데이터수집시스템(SCADA: Supervisory Control And Data Acquisition)에 기반하여 감시제어 및 모니터링 위주로 운영·관리를 실시하고 있다. 또한, 주요 핵심 공정인 응집제 약품투입, 소독 및 여과 설비 공정의 운영방식에 있어서 선험적 운영지식에 의한 방식으로 운영되고 있기 때문에 지속적인 안정적 운영을 위해서는 표준적이고 체계적인 운영관리 수단이 필요하다. 국외에서는 다양한 운영 조건에 기반한 정수처리 효율을 예측할 수 있는 모의(simulation) 도구의 개발을 통해 기존 운영되고 있는 정수장의 효율을 예측하는 데 활용하고 있는 실정이다. 본 논문은 실시간 운영관리가 가능한 기반을 구축하여 정수처리의 효율을 예측할 수 있는 시뮬레이터 개발을 통해 정수처리 공정별 기본 및 조합의 공정 시뮬레이션 모의 모듈 기술을 개발하기 위한 연구를 수행하였다. 또한 개발된 기술의 실증 운영을 통해 검증된 모듈을 반영한 정수장 시뮬레이터 시스템을 개발을 위한 연구를 수행하였다. 정수장 시뮬레이터는 수질정보, 물질수지, 수두손실등의 운영현황 데이터를 수집하는 기능, 착수-혼화-응집-침전-여과-소독 등 개별 공정별 주요 운전변수의 모니터링 및 제어를 통한 운영관리 기능, 원수 수질변화에 신속한 대응을 위한 정수처리 공정제어 의사결정지원 기능, 그리고 온라인 관망해석을 포함한 정수처리 전(단위)공정 시뮬레이터 기능 및 공정별 운영인자 최적화 기능 등으로 구성되어 있다. 현재 운영 중인 정수장의 공정별 운전 상태를 평가·관리하여 정수공정 운영 안정화 체계를 확보하고, 정수장의 유량과 수질의 갑작스런 변화에 따른 모의를 통한 수질예측으로 실시간 정수장 최적운영관리가 가능하다. 또한 원수 성상에 따른 적정 공정운영 자동화로 운영비 절감 및 효율적 인력 활용으로 정수장 운영 효율성을 제고함으로써 지속적이고 안정적인 정수장 운영 체계를 확보할 수 있다.
반도체 회로의 미세화로 단위 공정이 증가하면 TAT(turn-around time) 증가에 따른 제조 비용이 늘어난다. 반도체 공정 중 포토 공정은 마스크의 회로를 웨이퍼에 전사하는 공정으로 전사를 담당하는 노광장비의 성능에 의해 회로의 정확성이 결정된다. 이런 정확성을 검증하는 계측공정은 회로의 미세화가 진행될수록 필요성은 증가하나 TAT 증가의 주된 요인으로 최근 기계학습을 사용한 다양한 예측 모형들의 개발로 계측 결과를 예측하는 실험들이 진행되고 있다. 본 논문은 노광장비 센서들의 이상값을 감지하여 분류 후 계측공정을 진행하는 LFDC(Lithography Fault Detection and Classification) 시스템의 문제인 분류 성능이 떨어지는 것을 해결하기 위해 XGBoost를 사용하여 계측공정을 진행하지 않고 노광장비 센서의 이상값을 학습된 학습기를 통해 분류하여 포토 공정을 재진행하거나 다음 공정을 진행하는 방법을 실험하였다. 실험에서 사용된 계측 결과 예측 모형은 89%의 정확도를 확보하였고 반도체 데이터 특성인 심각한 불균형의 데이터에 대해서도 같은 정확도를 얻었다. 이런 결과는 노광장비 센서들의 이상값에 대해 89%는 정상으로 판단하였고 정상으로 판단한 웨이퍼를 실제 계측 시 예측과 같은 결과를 얻었다. 계측 결과 예측 모형을 사용하면 실제 계측을 진행하지 않고 노광장비 센서들의 이상값에 대한 판정을 할 수 있어 TAT 단축으로 제조 비용감소, 계측 장비 부하 감소 및 효율 향상을 할 수 있다. 하지만 본 논문에서는 90%의 성능을 보이는 계측 결과 예측 모형으로 여전히 10%에 대해서는 실제 계측이 필요한 문제에 대해 추후 더 연구가 필요하다.
Journal of the Korean Institute of Intelligent Systems
/
v.6
no.2
/
pp.97-105
/
1996
In this paper, an adaptive model predictive controller for nodinear processes using fuzzy model is proposed. Adaptive structure is implemented by recursive fuzzy modeling. The model and control law can be obtained the same as GPC, because the consequent parts of the fuzzy model comprise linear equations of input and output variables. The proposed Adaptive fuzzy model predictive controller (AFMPC) controls nonlinear process well due to the intrinsic nonlinearity of the fuzzy model. When AFMPC's output is variation in the process control input, it maintains zero steady-state offset for a constant reference input and has superior performance. The properties and performance of the proposed control scheme were examined with nonlinear plant by simulation.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2004.07b
/
pp.1117-1120
/
2004
경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.
This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.
Solmi Kim;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
Composites Research
/
v.37
no.4
/
pp.275-285
/
2024
This paper presents research trends in predicting the deformation of carbon fiber reinforced thermoplastic (CFRTP) composites during thermoforming. Various thermoforming variables that must be considered during the CFRTP thermoforming stages are investigated, and factors influencing process-induced deformation are analyzed. Key material behavior models, such as crystallinity and viscoelastic, which are important for predicting thermoforming deformation, are also examined. Additionally, trends in predicting CFRTP thermoforming deformation using finite element analysis with material behavior models and machine learning techniques are analyzed. In summary, more precise prediction techniques for thermoforming deformation can be developed by associating them with material behavior models and considering thermoforming variables.
Chemical Mechanical Planarization (CMP) process that planarizes semiconductor wafer's surface by polishing is difficult to manage reliably since it is under various chemicals and physical machinery. In CMP process, Material Removal Rate (MRR) is often used for a quality indicator, and it is important to predict MRR in managing CMP process stably. In this study, we introduce prediction models using machine learning techniques of analyzing time-series sensor data collected in CMP process, and the classification models that are used to interpret process quality conditions. In addition, we find meaningful variables affecting process quality and explain process variables' conditions to keep process quality high by analyzing classification result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.