• Title/Summary/Keyword: 공정묘

Search Result 50, Processing Time 0.029 seconds

Deposition of Micropattern using The Laser Direct Writing Method with a polymer coating layer (폴리머 코팅층 레이저 직접묘화법을 이용한 미세패턴증착)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6980-6985
    • /
    • 2014
  • A micro-conductive pattern was fabricated on an insulating substrate ($SiO_2$) surface using a laser direct writing method. In the LIFT process, when the laser beam irradiates a thin metal film, the photon energy is absorbed by the film and converted to thermal energy, and the thermal decomposition reaction produced by the resulting heat conduction forms a deposit on the substrate. The resistivity of the micro-electrodes deposited through LIFT process with and without polymer coating was measured. The results showed that the electric conductivity of the micro-pattern and micro-structure can be increased approximatly two times when the deposited micropattern is fabricated through a LIFT process with a polymer coating, compared to the case without a polymer coating.

Effect of Light Quality during $GA_3$ Imbibition and Germination Temperature on Pepper Seed Germinability (파종 전 $GA_3$와 광질 처리, 발아온도에 따른 고추종자의 발아율)

  • 강진호;심영도;강신윤;조영욱;박아정
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • Higher and uniform germination should be necessary because many commercial pepper (Capsicum annum L.) seedlings were nowadays sold to farmer. The experiment was carried out to determine the effect of its cultivars (Daemyung; Wanggochu), GA$_3$ (concentration; period), light quality (red; far-red; blue; dark) during GA$_3$imbibition, and germination temperature (GT: 25 or 15$^{\circ}C$ constant; 25/15$^{\circ}C$ alternating) on the rate of germination done under incandescent lamps until 9 days after sowing. Final seed germination was not different between GA$_3$0 to 1.0 mM concentrations but the elapsed days to 50% germination $(T_{50})$ were more reduced by GA$_3$ treatment than water imbibition. Under $25^{\circ}C$ constant germination temperature, earlier germination was enhanced by GA$_3$treatment showing the lowest rate at darkness, although the final germination rates of water imbibition and GA$_3$ treatments were same. The final germination rates of alternating and 25 $^{\circ}C$ constant GT in cv. Daemyng was also equal, while the germination rates of $25^{\circ}C$ and 15$^{\circ}C$ constant GT were the highest and the lowest regardless of cultivars. There was no difference between light quality treatments impelled during GA$_3$ imbibition when light treated seeds were germinated at alternating and $25^{\circ}C$ constant GT. At 15$^{\circ}C$ constant GT, however, red light or dark treatment during GA$_3$imbibition increased the germination rate since 5 days after sowing.

  • PDF

Effect of Cell Size on Growth and Development of Plug Seedlings of Three Indigenous Medicinal Plants (플러그 셀 크기가 세 가지 자생 약용식물 묘 생육에 미치는 영향)

  • Oh, Hye Jin;Park, Yoo Gyeong;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • There have not been many studies conducted on the seedling production, especially in plug trays, of traditional medicinal plant species. In an effort to establish guide lines for seedling production, this study investigated the effect of plug cell size on the growth and development of plug seedling of three medicinal plant species. Seeds were sown in either 128, 200, or 288-cell plug trays, containing a commercial medium. Growth and development of individual seedling was generally promoted with increasing size of a plug cell in all of the three species. The greatest biomass of the seedlings gained in a plug tray was obtained in the 288-cell trays in Perilla frutescens var. acuta Kudo and Sophora tonkinensis, and the 200-cell trays in Angelica gigas Nakai. Overall growth and development of the shoot and root of a single seedling of Perilla frutescens var. acuta Kudo, except total chlorophyll and anthocyanin contents, was the greatest in the 128-cell tray. However, length of the longest root, length, width and area of the leaf, internode length, root fresh weight, and root ball formation in the 200- and 288-cell trays were not significantly different each other. In Sophora tonkinensis, although length of the longest root, stem diameter, leaf width, leaf area, shoot fresh weight, and root ball formation were not significantly different among the treatments, length of the longest root and root ball formation of a single seedling were the greatest in the 128-cell tray. Overall shoot and root growth, except total chlorophyll content, of a single seedling of Angelica gigas Nakai was the greatest in the 128-cell tray. Based on the total biomass, it is concluded that 288-cell trays are recommended for production of plug seedlings of medicinal plant species P. frutescens var. acuta Kudo and S. tonkinensis. In A. gigas Nakai, it would be more economical to use the 200-cell trays than 128-cell trays due to total biomass.

The Structual Restoration on Gyeongju-Style Piled Stone-Type Wooden Chamber Tombs (경주식 적석목곽묘의 구조복원 재고)

  • Gweon, Yong Dae
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.66-87
    • /
    • 2009
  • The definition of the structure of wooden chamber tomb(piled stone-type) is as follows. It is a tomb with wooden chamber, and stones were piled on top of the wooden chamber, and then a wooden structure was placed on top of the piled stones, and more stones were piled on top of the wooden structure, and sealed with clay. Of course this definition can vary according to periods, the buried, etc. Gyeongju-style piled stone type wooden chamber tombs have some distinguished characteristics compared to general definition of piled stone type wooden chamber tombs. Outside the wooden chamber, either stone embankments or filled-in stones were layed out, and pilet-in stones are positioned right above the wooden chamber, and almost every class used this type, and finally, it is exclusively found in Gyeongju area. First generations of this Gyeongju-style piled stone type wooden chamber tombs appeared in first half of 5th century. These tombs inherited characteristics like ground plan, wooden chamber, double chamber(inner chamber and outer chamber), piled stones, burial of the living with the dead, piled stones, from precedent wooden chamber tombs. However these tombs have explicit new characteristics which are not found in the precedent wooden chamber tombs such as stone embankments, wooden pillars, piled stones(above ground level), soil tumuluses. stone embankments and wooden pillars are exclusively found on great piled stone type above-ground level wooden chamber tombs such as the Hwangnamdaechong(皇南大塚). Stone embankments, wooden pillars, piled stones(above ground level) are all elements of building process of soil tumuluses. stone embankments support outer wall of above-ground level wooden chambers and disperse the weight of tumuluses. Wooden pillars functioned as auxiliary supports with wooden structures to prevent the collapse of stone embankments. Piled stones are consists of stones of regular size, placed on the wooden structure. And after the piled stones were sealed with clay, tumulus was built with soil. Piled stones are unique characteristics which reflects the environment of Gyeongju area. Piled stone type wooden chamber tombs are located on the vast and plain river basin of Hyeongsan river(兄山江). Which makes vast source of sands and pebbles. Therefore, tumulus of these tombs contains large amount of sands and are prone to collapse if soil tumulus was built directly on the wooden structure. Consequently, to maintain external shape of the tumulus and to prevent collapse of inner structure, piled stones and clay-sealing was made. In this way, they can prevent total collapse of the tombs even if the tumulus was washed away. The soil tumulus is a characteristic which emerges when a nation or political entity reaches certain growing stage. It can be said that after birth of a nation, growing stage follows and social structure will change, and a newly emerged ruling class starts building new tombs, instead of precedent wooden chamber tombs. In this process, soil tumulus was built and the size and structure of the tombs differ according to the ruling class. Ground plan, stone embankments, number of the persons buried alive with the dead, quantity and quality of artifacts reflect social status of the ruling class. In conclusion, Gyeongju-style piled stone type wooden chamber tombs emerged with different characteristics from the precedent wooden chamber tombs when Shilla reached growing stage.

Enhanced Graft-take Ratio and Quality of Grafted Tomato Seedlings by Controlling Temperature and Humidity Conditions (토마토 공정묘의 접목활착율과 묘소질 향상을 위한 접목 활착실내의 적정 온.습도 조건 구명)

  • Vu, Ngoc-Thang;Zhang, Cheng-Hao;Xu, Zhi-Hao;Kim, Young-Shik;Kang, Ho-Min;Kim, Il-Soep
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • This study was conducted to enhance graft-take ratio and quality of grafted tomato seedlings by controlling temperature and humidity during the healing and acclimatization processes. Three temperature levels ($20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were carried out to determine optimum temperature on four rootstocks. In addition, twelve combinations of three relative humidity levels (70%, 80%, and 90%) and four temperature levels ($17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were set up to evaluate the effect of relative humidity and temperature on the graft-take ratio of grafted seedlings. In the other hand, five relative humidity periods (H0, H1, H2, H3, and H4: 90% relative humidity for first 0, 1, 2, 3 and 10 days and afterwards relative humidity was reduced to 70%, respectively) were examined effect of relative humidity periods on the graft-take and quality of grafted seedlings. The higher graft-take ratios (84.0~87.4%) were showed at $23^{\circ}C$ compared to $20^{\circ}C$ and $26^{\circ}C$ in all rootstocks. Graft-take ratios decreased and number of diseased plants increased at high temperature. The graft-take ratios increased with increasing relative humidity in all temperature levels on the $3^{rd}$ and $7^{th}$ day after grafting. However, increasing relative humidity significantly increased percent of diseased plants. The graft-take ratio reduced at ($26^{\circ}C$) and ($17^{\circ}C$) temperature under all relative humidity conditions. The graft-take ratio increased with increasing period of 90% relative humidity. Maximum graft-take ratios were observed in H2 and H3 treatments. Graft-take ratio decreased with increasing 90% relative humidity for 10 days (H4). Diseased plants had not been found in H0, H1, H2, and H3 treatments. Seedling quality was improved through increasing fresh and dry weight of root, compactness, and root morphology of tomato seedlings in H2 and H3 treatments. Therefore, high relative humidity (90%) for first 2 or 3 days and afterwards reduced low relative humidity (70%) at $23^{\circ}C$ condition during healing and acclimatization promoted the graft-take and quality of grafted tomato seedlings.

An Analysis on the Operation Productivity and Initial Growth of Containerized Seedlings Planted by the Lightweight Planting Auger (경량식혈기를 이용한 용기묘 식재의 작업공정 및 초기생장 분석)

  • Ko, Chi-Ung;Kim, Dong-Hyun;Lee, Kwan-Hee;Kim, Jin-Hyun;Kim, Dong-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.77-86
    • /
    • 2016
  • Due to aging of the rural and mountain populations the labor force is reduced. However work intensity continues to increase, thus, there is a need to improve the current effectiveness of forest operations. This study compared and analyzed the Operation productivity and efficiency of planting containerized seedlings using a battery-powered planting auger and a mattock. Growth was also investigated by looking into the initial growth increments in the planted seedlings. Tasks were investigated by analyzing the process and operation time needed to plant 1 containerized seedling using a planting auger and a mattock. The time spent on the various elements of the planting process was measured with a stopwatch but observations were done continuously. Result of the study shows that with the use of a lightweight planting auger the average time spent to plant a containerized seedling is 18.61 seconds while with the use of a mattock it took an average of 26.96 seconds which clearly demonstrates that the planting auger is more efficient in terms of working hours. Working intensity was also analyzed with the use of a portable heart rate monitor (Polar V800). The average increase in heart rate and work intensity index were analyzed for one planting cycle. It was observed that when using the lightweight planting auger, there was a 46.51% increase in the average heart rate while a 74.67% increase in heart rate when the mattock was used which shows that there is a significant increase in heart rate when mattock is used. In addition, work intensity index was observed to be 29.95% and 47.83% when the planting auger and mattock were used respectively. With the continuous use, work intensity index is significantly higher with the use of the mattock as compared to that of the lightweight planting auger. There were no significant differences on the growth increment of seedlings planted using the different tools until a year after planting, however differences in growth increment were observed after a year. A difference of 15.1 cm in height and 3.41 mm in diameter was observed which shows that the use of lightweight planting auger is excellent for planting containerized seedlings.

Effect of Medium Composition Including Chestnut Woodchips and Granular Rockwool on Growth of Plug Seedlings (밤나무 목재입자와 입상 암면의 배지내 혼합 비율이 플러그묘의 생육에 미치는 영향)

  • Lim, Mi Young;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.508-512
    • /
    • 2000
  • Growth of red pepper (Capsicum annuum) 'Kumtap', tomato (Lycoperisocon esculentum) 'Seokwang', petunia (Petunia hybrida) 'Madness Rose', and pansy (Viola tricolor) 'Magestic Giant' in mixtures of chestnut woodchips and granular rockwool at 25:75, 50:50, or 75:25 (v/v) was examined. Chestnut woodchips were soaked in water for 48 hours or aged in open field for 6 months in order to remove substances impeding plant growth. A commercial plug medium was used as the control. All treatments showed in a similar result in red pepper, petunia, and pansy. Plant height, fresh weight, dry weight, and chlorophyll content in media containing chestnut woodchips, especially in higher proportions, were poorer as compared to those in the control. On the contrary, height, fresh weight, and dry weight of tomato seedlings in media containing woodchips were significantly higher than those in the control. For petunia, pansy, and red pepper, six month ageing in open field of woodchips was more favorable for growth than 48 hour water soaking. Emergance of petunia seed was inferior, especially when woodchip content was higher, to the other crops with a resultant growth suppression. From the results, chestnut woodchips proved to be a practical material as a medium component only in tomato plants.

  • PDF

A Study on Flat Iron Axe Manufacturing Technology Using Metallurgical Analysis - Focused on the Artifacts Excavated from the Hadae Ancient Tombs in Ulsan - (금속학적 분석을 통한 판상철부의 제작기술 연구 - 울산 하대고분 출토 유물을 중심으로 -)

  • Jo, Hanui;You, Halim;Lee, Jaesung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.240-251
    • /
    • 2019
  • This study examined the manufacturing technology used for the flat iron axes excavated from Ulsan Hadae. Their microstructures were analyzed using metallurgical methods. In addition, a variety of manufacturing technologies were examined and compared using existing research materials on flat iron axes. As a result of analyzing ten flat iron axes, which were excavated in the order that they were laid out in a row in one of the wooden coffin tombs at Ulsan Hadae, Tomb No. 44, it was possible to classify the flat iron axe manufacturing technology and system into three types: 'pure iron - shape processing', 'pure iron - shape processing - carburizing', and 'pure iron - shape processing - carburizing - decarburizing.' All of the flat iron axes were produced by forging, and most of them were made by beating the pure iron into their shapes. In particular, a number of the flat iron axes were reinforced through a carburizing process after shaping the iron. This appears as steel products forming the basis of the steel industry at the time were commonly used as an intermediary material or currency. On the other hand, it was commonly found in all samples that the hardening was not performed after shaping or carburizing. Since the microstructure of the flat iron axes made of pure iron contained a large number of impure inclusions and the result of analyzing the components of the non-metal inclusions showed characteristics of slag which contains a mixture of glass phase and wustite, it is possible that low-temperature reduction was used in the refining process.

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.