• Title/Summary/Keyword: 공변세포

Search Result 45, Processing Time 0.025 seconds

Misconceptions and Truths of Morphological Characteristics in Plant Stomata (식물에서 기공 형태에 대한 오해와 진실)

  • Kim, Dae Jae;Lee, Joon Sang
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.241-246
    • /
    • 2017
  • The walls of guard cells have many different specialized features. Guard cells are present in leaves of bryophytes, ferns and almost all of the vascular plants. Guard cells show considerable morphological diversities. It is understood that the stomata show two types in terms of morphological characterizations of guard cells. The first type is only found in a few monocots including Poaceae and Cyperaceae. In rice and corn, guard cells have the morphological characteristics of dumbbell shape. The morphological characteristics of dumbbell shape always have subsidiary cells. The other type is found in every dicots and many monocots and they are kidney-shaped guard cells. The plants of kidney-shaped guard cells rarely have subsidiary cells except Commelina communis L. Therefore, it could be concluded that two types of the morphological characteristics of guard cells cannot divide according to monocots or dicots. Every plants in which stomatal characteristic features were all different, most of them belong to kidney-shaped guard cells. However in case of Sedum sarmentosum, guard cells were shown to be long and narrow lips type. In Tradescantia virginiana, the shape of guard cells could be called perfectly to half-moon type. Therefore, it could be concluded that kidney-shaped types are all different in some way, but dumbbell-shaped types are almost constant.

Influence of the Mesophyll on the Change of electrical Potential Difference of Guard Cells Induced by Red-light and CO2 in Commelina communis L. and Tradescantia virginiana L. (닭의장풀과 자주달개비에서 적색광과 이산화탄소에 의해 유도된 공변세포의 전위차 변화에 미치는 엽육세포의 영향)

  • 이준상
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.383-389
    • /
    • 1993
  • The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and in the detached epidermis have been investigated. Guard cells in intact leaves showed the membrane hyperpolarization in response to light. The biggest induced change of the membrane potential difference (PD) in the guard cells of the intact leaf was 13 m V by light and 42 mV by $CO_2$ in Commelina communis. Similar results were obtained with Tradescantia virginiana. However, there were no changes of membrane PD in detached epidermis. In order to determine the influence of the mesophyll on the changes of membrane PD, infiltration of the mesophyll cells with photosynthetic inhibitors was performed. In CCCP infiltrated leaf discs the guard cell membrane was depolarized slightly by red-light and hyperpolarized by $CO_2$, but in leaf discs infiltrated with DCCD and DCMU the guard cell membrane was hyperpolrized by both red-light and $CO_2$ as the control leaf discs. In azide infiltrated leaf discs the guard cell membrane showed no response to light and there was a much reduced membrane hyperpolarization by $CO_2$ compared to other responses. It was likely that azide caused leaf damage and the activity of cell metabolism was decreased greatly, resulting in small membrane PD changes by $CO_2$ and no changes by redlight. Therefore, it can be suggested that red light was sensed by the mesophyll and the light induced guard cell membrane hyperpolarization was related to energy produced by cyclic-photophosphorylation, but ${CO_2}-induced$ guard cell membrane hyperpolarization was not related to photosynthesis. Alkalisation of the vacuole was observed when the intact leaf was exposed to $CO_2$, indicating that membrane hyperpolarization was mainly the result of proton efflux.efflux.

  • PDF

Changes of Chloroplast Number per Guard Cell pairs of Leaves by Ploidy Level in Nicotiana tabacum L. cv. BY-4 (담배 식물체[Nicotiana tabacum L. cv. BY-4]의 배수성에 따른 공변세포의 엽록체 수 변화)

  • 배창휴;이연희;양덕춘;민경수;김호일;이호연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.179-184
    • /
    • 2001
  • We evaluated a possibility of the use of chloroplast number per guard cell pairs as a measure for ploidy level in the different ploidy levels of tobacco plant (Nicotiana tabacum L. cv. BY-4) . The guard-cell chloroplast numbers of leaves of haploid plant were a half of wild-type plant. Furthermore, the number of chloroplast per guard cell pairs of the leaves of doubled-haploid plant increased in two times compared with that of haploid plant. In addition, the chloroplast number was not changed in the F$_1$ progenies. The change of the chloroplast number by leaf stage was not observed. The results indicate that there is a strong relationship between ploidy level (2x and 4x) and chloroplast number per guard cell pairs. This relationship was also, observed in both in vitro and pot cultured plants. It was determined that the measurement of chloroplast number in guard cells of leaf epidermis is simple to use and less labour intensive, and hence can be considered a practical alternative to the chromosome counting methods or flow cytometry in the tobacco plant.

  • PDF

Active and Passive Behaviours of the Guard Cells for Stomatal Opening and Closing in Heteromeres arbutifolia and Ferocactus acanthodes (Heteromeres arbutifolia 와 Ferocactus acanthodes의 기공개폐를 위한 공변세포의 능.수동적 행동)

  • Nam-Kee Chang
    • The Korean Journal of Ecology
    • /
    • v.4 no.3_4
    • /
    • pp.59-67
    • /
    • 1981
  • Stomatal resistances of the leaves in Heteromeres arbutifolia and of the stems in Ferocactus acanthodes were studied to estimate active and passive behaviors of the guard cells on a theoretical basis. Active and passive stomatal responses to light and water deficit were observed. When the change rate of existent water due to variation of osmotic potential in the guard cells and the loss rate of transpirational water from the guard cells are $\Delta$wi-$\Delta$wt and leaded to active behaviors for opening and closing stomata. However, when stems of F. acanthodes with stomata closecd under the solar irradiation were covered with black cloth and then taken off, behaviors of the guard cells occurred in the condition of $\Delta$wi<$\Delta$wt and were passive. Under the conditiion of $\Delta$wi<$\Delta$wt due to cutout from stems, passive behaviors of the guard cells in H. arbutifolia and F. acanthodes always occurred in spite of the solar irradiation and darkness, respectively. The transpirational resistance coefficients of the guard cells in stems of F. acanthodes (0.380) and Opuntia bigelovii (0.135) wer emuch higher than in leaves of H. arbutifolia (0.034). Moreover, stomatal opening in stems of F. acanthodes during the daytime could be induced by watering. Those results are interpreted as that since the guard cells in desert Crassulacean acid metabolism (CAM) plants always exist in the state of stomatal opening, nocturnal stomatal opening and daytime stomatal closing are exhibited by passive behaviors of the guard cells in the alternant conditioins of $\Delta$wi>$\Delta$wt and $\Delta$wi<$\Delta$wt, respectively.

  • PDF

앱시스산에 의해 기공이 닫히는 신호전달과정에서 G-단백질의 분할

  • 이영숙
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.429-434
    • /
    • 1994
  • 식물 호르몬의 하나인 앱시스산이 식물의 기공을 닫게 하는 과정 중에 phospholipase C가 활성화되어 inositol 1,4,5-trisphosphate(P3)의 양이 증가함이 보고되었다 (Cot and Crain. 1994). 그러나 아직까지 공변세포에서 phospholipase C의 활성을 조절하는 G-단백질에 대한 보고는 없었다. 그러므로 앱시스산에 의한 기공닫힘과정에 G-단백질이 수반되는지를 조사하고자, G-단백질 활성의 저해제인 pertussis toxin과 촉진제인 cholera toxin을 처리하여 보았다. 닭의장풀(Commelina communis L.)의 잎 뒷면으로부터 얻은 온전한 표피층과 잠두(Vicia faba L)의 잎을 부분 분해하여 공변세포만을 남긴 표피층에 pertussis toxin을 처리하였을 때, 앱시스산에 의한 기공닫힘이 부분적으로 억제됨을 관찰하였다. 그러나 cholera toxin의 경우는 아무런 영향이 없었다. 공변세포만을 지닌 표피층에 pertussis toxin을 전처리한 후 앱시스산을 가했을 때, 앱시스산에 의한 IP3 양의 증가 양상이 억제됨을 확인하였다. 이러한 결과들로부터 앱시스산에 의한 기공닫힘과정에는 pertussis toxin-sensitive, phospholipase C-linked G-protein이 관여하고 있음을 알 수 있었다.

  • PDF

What are the Possible Roles of CO2 on Stomatal Mechanism? (기공 메커니즘에 대한 CO2의 역할은 무엇인가?)

  • Lee, Joon Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.

The Taxonomic Consideration of Leaf Epidermal Microsturcture in Glechoma L. (Nepetinae, Lamiaceae) (긴병꽃풀속(Glechoma L., 꿀풀과)의 잎표피 미세구조에 대한 분류학적 검토)

  • Jang, Tae-Soo;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.3
    • /
    • pp.239-254
    • /
    • 2007
  • A comparative micromorphological study was examined on the leaves of the genus Glechoma and related genera (Nepetinae, Lamiaceae) by scanning electron microscopy (SEM) in order to evaluate their significance in the taxonomy. The leaves of taxa Marmoritis, Nepeta sect. Glechomanthe, G. hederacea var. longituba (Korea) are revealed amphistomatic type, while the remnants of taxa had hypostomatic type. The size range of the guard cells is $12.50-28.75{\times}9.17-21.25{\mu}m$: the smallest one was found in M. pharicus ($12.50-15.83{\times}9.17-11.25{\mu}m$), while the largest one was measured to G. hederacea var. longituba (Korea: $28.75-28.88{\times}21.25-21.38{\mu}m$). The stomatal type of genera Agastache, Dracocephalum was mostly diacytic, however for the rest rarely together with anisocytic and anomocytic, except G. hederaca var. longituba (Korea), Meehania urticifolia by having combined with diacytic and anomocytic. The shapes of epidermal cells are differ from in abaxial and adaxial side, and dived with two types (e.g., platelet, stripe pattern). Five types (three glandular, two non-glandular hairs) of trichomes are distributed in leaves. Among trichomes, long and stalk capitates glandular trichome, subsessile glands are different from studied taxa so that leaf micromorphological characters are significance features in the taxonomy.

Leaf epidermal microstructure of the genus Scopolia Jacq. s.l. (Solanaceae-Hyoscymeae) and its systematic significance (광의의 미치광이풀속(Scopolia Jacq. s.l., 가지과-Hyoscymeae족)의 잎표피 미세구조와 이의 계통분류학적 중요성)

  • Hong, Suk-Pyo;Paik, Jin-Hyub
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.3
    • /
    • pp.267-282
    • /
    • 2001
  • To examine the leaf epidermal microstructure of three genera (Scopolia s.s., Anisodus, AtroPanthe, including Przewalskia as an outgroup) in the genera Scopolia Jacq. s.l., leaves of 10 species (37 specimens) were investigated by the light microscopy (LM) and scanning electron microscopy (SEM). The stomata of studied taxa were 'amphistomatic type' and the size (guard cell) range was $18-64{\times}11-48{\mu}m$. The size of stomata is slightly differed from between the taxa; the smallest size of stomata were found in the monotypic genus, Przewalskia ($24-27{\times}16-17{\mu}m$), on the other hand the largest one was found in Anisodus carniolicoides ($62-64{\times}43-48{\mu}m$). The stomatal complex was mostly anomocytic (in Scopolia s.s., Anisodus taxa : A. luridus, A. carniolicoides, A. acutangulus) and sometimes anisocytic (in Anisodus tanguticus, Przewalskia, Atropanthe). The stomata is mostly crescent in shape, but rarely circular, especially in Przewalskia tangutica. The shapes of epidermal cells are similar in both adaxial and abaxial sides, and mostly undulate/sinuate polygonal anticlinal wall, but rarely arched in Przewalskia tangutica. The epicuticular wax was not well developed in most studied taxa, except Anisodus tanguticus which is well developed cuticular striae around the stomatal complex. The elongate-headed glandular trichomes were found in Scopolia s.s. and Przewalskia. While the taxa of Anisodus and Atropanthe have not any trichomes (i. e., glabrous), except Anisodus luridus, which has simple or sometimes branched (dendritic- type) non-glandular trichome. Finally, the systematic and ecological significance of the leaf micromorphological features (stomata complex, trichome, etc.) in identification and elucidation of Scopolia s.l. including Przewalskia, especially between or within the genera including among the species is also discussed.

  • PDF

Anatomical Observation of Vitrified and Glaucous Leaf from Rehmannia glutinosa Plant Produced in Vitro (지황 기내배양시 투명화된 잎과 정상잎간의 조직학적 관찰)

  • 백기엽;유광진;박상일;신성련
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.6
    • /
    • pp.323-327
    • /
    • 1997
  • Addition of growth inhibitors such as ancymidol, ABA, chloromequat, and pachlobutrazol into MS medium had no effect to preventing vitrification in cultures of Rehmania glutinosa. Anatomical investigation revealed that vitrified thick leaf tissue in vitro had larger intercellular space with poor development of sponge and pallisade tissue compared to those of in vitro grown glaucous and field grown plants. In vitro grown glaucous leaf had smaller and round type stomata showing distinguishable guard and subsidiary cell than those of reestablished plantlets into soil whereas abnormal stomata and poor development of epicuticular wax on the surface of leaf was observed in verified plantlet.

  • PDF