• Title/Summary/Keyword: 공명 소음

Search Result 148, Processing Time 0.024 seconds

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.

A Study on the Development of the Acoustic Absorption Well of the Cruise Yacht (크루즈요트의 기관실 소음 차단용 차음벽 개발에 관한 연구)

  • Yu, Young-Hun;Yi, Jong-Keun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.109-113
    • /
    • 2007
  • Yacht have an high powered main engine relatively light hull, so the noise generated from the engine have a bad influence upon the crew and passenger. Recently, cruise yacht is made an attempt by domestic production skill, however the insulation skill of the noise made by the main engine is not satisfy the real purchasing power of the buyer. Like this, yacht cabin's noise level is becoming the barometer to decide the purchase. the method to insufficient. However, if we use the skill of the monitoring equipment and the genetic algorithm system, the circumference of the main engine can be enclosed by an high quality absorbtion wall and the noise levels of the cabins are improved. In this study, the sound absorbtion barrier is experimentally researched by change the volume and the length of the neck for the Helmholtz resonator as the resonator can absorb the noise effectively.

  • PDF

Usefulness of Acoustic Noise Reduction in Brain MRI Using Quiet-T2 (뇌 자기공명영상에서 Quiet-T2 기법을 이용한 소음감소의 유용성)

  • Lee, SeJy;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-$T_2$ and $T_2$ sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-$T_2$ and $T_2$ was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-$T_2$, $T_2$ and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-$T_2$ and $T_2$. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by $15dB_A$ and $10dB_A$ on $T_2$ and Q-$T_2$ test. Also, the average value of heartbeat rate was lower in Q-$T_2$ for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-$T_2$. According to the qualitative analysis, the overall quality image of 59 case $T_2$ and Q-$T_2$ was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-$T_2$ is a promising technique for acoustic noise reduction and improved patient comfort.

A Numerical Study on the Generation and Propagation of Intake Noise in the Reciprocating Engine (엔진 흡기계의 소음발생 및 전파에 관한 수치연구)

  • 김용석;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.65-70
    • /
    • 1996
  • 엔진소음을 소음특성에 따라 분류하면 공력소음(Aerodynamic Noise), 연소소음(Combustion Noise), 기계적인 소음(Mechanical Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise), 흡기계소음(Intake System Noise), 냉각계소음(Cooling System Noise), 엔진표면소음(Engine System Noise)등으로 분류할 수 있다. 이러한 여러소음중 엔진 내부의 유동에 의한 흡배기계통으로의 소음방출은 자동차 실 내외 소음의 중요한 문제로 대두되는데, 이를 줄이기 위해 그 동안 소음기 등의 서브시스템의 형태와 그 위치조정에 관한 연구가 수행되어 왔다. 그러나 이것이 비용 또는 성능에 영향을 미치므로 본질적인 소음원을 규명해 내는 것이 필요하게 되었다. 흡배기계의 소음은 엔진의 흡입, 배기행 정시 피스톤의 운동에 의해 팽창 및 압축파 형태의 압력파(pressure wave)로 발생하게 되고, 밸브근방에서는 유동의 박리(separation)에 의해 발생하게 된다. 소음기 등의 서브시스템에서도 유동의 박리에 의해 발생하게 되며 특히 배기행정시 발생하는 압력파는 비선형영역에 있게된다. 흡기소음은 배기에 비해 그 크기가 작아서 그동안 등한시 되어왔으나 이것이 소비자의 불평요인으로 작용하므로써 이에 대한 연구도 활발히 수행되어야 한다. Bender, Bramer[1]는 흡배기계 소음의 외부 방사에 관하여 전반적으로 기술하였고 Sierens등[2]은 흡기계에서 1차원 MOC(Method of Characteristics)방법으로 비정상 유동해석을 하고 실험결과와 비교하였다. J.S.Lamancusa 등[3]은 흡기 소음원을 실험을 통해 예측하였고, 흡기소음도 비선형 거동을 보인다고 밝혔다. Yositaka Nishio 등[4]은 새로운 흡기실험장치를 고안하여 공명기(resonator)의 위치 변화에 의한 저소음 흡기계를 설계 초기단계에서부터 적용하려 하였다. 일반적으로 흡배기계의 복잡한 형상 때문에 대부분 실험을 통해 문제를 해결하려 하였고, 수치해석은 피스톤의 운동을 배제한 단순화한 흡배기계의 정상상태 유동해석이 주를 이루어왔다. Taghaui and Dupont 등[5]은 KIVA코드를 사용하여 흡기포트와 연소실 그리고 밸브의 움직임을 동시에 고려한 수치해석을 도입하였다. 하지만 이들이 밸브의 운동을 고려하기 위해 사용한 이동격자는 격자점은 시간에 따라 변화하지만 그 격자의 수가 일정하게 유지되어 있어서 밸브의 완전개폐를 해석할 수가 없다. 강희정[6]은 단일 실린더와 단일 배기밸브를 갖는 문제로 단순화하여 피스톤과 밸브의 움직임을 고려하므로써 배기행정 후 소음이 어떻게 전파해 나가는가를 연구하였다. 본 연구에서도 최소밸브간격과 최대밸브간격 사이에서만 계산이 가능하나 흡기의 경우는 밸브가 닫힐 때 생기는 압력파가 중요하므로 실린더와 밸브사이에 벽면조건을 주어 밸브의 개폐를 모사하였다.

  • PDF

Asymmetry Actions of Tymbals & Resonance Condition in Air Sac of the Cicada Cryptotympana Atrata (말매미의 진동막 비대칭 운동과 복부에서의 공명 조건)

  • Yoon, Ki-Sang;Suh, Sang-Joon;Suh, Jae-Gap
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This paper presents a study on acoustic characteristics and sound generation mechanism of Cryptotympana atratas' songs which cause noise problems in summer days. The waveforms & FFT of Cryptotympana atratas' songs in nature were analyzed, and the actions of tymbals were visualized by the high speed camera. In order to know resonance frequency of the abdominal cavity of male Cryptotympana atrata, the sine sweep test was done. It was observed from the experimental results that Cryptotympana atrata's two tymbals act asymmetrically with respect to time & shape, and make a variety of frequencies every time it vibrates. It was also shown that Cryptotympana atratas' have a structure that cause resonances sounds only in a $7{\sim}7.5 kHz$ bandwidth.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Control of the Multi-Mode Muffler for Low Noise and Low Backpressure (저소음 저배압을 위한 다중모드 배기계의 소음제어)

  • Son, Dong-Gu;Kim, Heung-Seop;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1371-1378
    • /
    • 2000
  • To reduce backpressure for improving engine power in exhaust system, a large difference of pressure is required, but this is in conflict with the requirement for reducing exhaust noise that needs a small pressure difference. In this paper, the controllable muffler designed by simplifying the structure of the exhaust system has a low backpressure and a proper sound specification to the rotation of engine. The exhaust system in conventional studies has been designed to have maximum noise reduction over the whole driving domain, but due to its complex structure this led to increased backpressure. If the muffler is designed according to the driving frequency, which is a dominant noise component in stationary driving speed, the backpressure is reduced due to the simplified structure of the muffler. Furthermore, a multi-mode muffler able to change structure with varied driving speed was designed.

Exhaust System Design for the Integrated Automotive Muffler (고성능 일체형 자동차 소음기를 장착한 배기계 설계)

  • Jeong, Soo-Jin;Kang, Woo;Lee, Jeom-Joo;Kim, Tae-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.24-31
    • /
    • 2009
  • This paper has been focused on the development of integrated automotive muffler system to meet getting more stringent sound quality target. Typically, muffler system consists of resonator and main muffler. The many varieties in exhaust pipe routing and the flexibility in muffler design make it possible to design an exhaust system to deliver tailpipe sound for specific sound quality requirement. In recent, it is strongly recommended that the function of resonator be merged into that of main muffler due to severe space limitation of underbody. The main objective of the paper is to study the effects of various geometrical parameters on the muffler performance. This work has succeeded in eliminating resonator without loss of muffler performance. This work has also investigated the effect of diameter of hole, geometries of pipes and location of muffler on the sound quality.

Characterization of Buffeting Noise Through a Rear Window in an Automobile Using LBM (격자 볼츠만법을 이용한 자동차 뒷 창문 버페팅 소음 특성해석)

  • Lee, Songjune;Choi, Hyunggyu;Cho, Munhwan;Ih, Kang-duck;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.692-699
    • /
    • 2015
  • Buffeting noise through a rear window in an automobile is investigated by using lattice Boltzmann method. The generation mechanism of the buffeting noise can be understood as the resonance mechanism in a Helmholtz resonator, which is driven by the convecting vortex in a shear-layer flow over the neck of the resonator. Two methods to suppress the buffeting noise are proposed, and their effects are quantitatively assessed. Opening front window reduces the observed buffeting tonal noise by 25 dB and the overall SPL by 4 dB, and the installation of a Helmholtz resonator acting as a dynamic damper reduces the tonal component that by 35 dB and the overall SPL by 10 dB.

A new method for extracting resonance information in acoustic wave resonance scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.504-509
    • /
    • 1998
  • A new method is proposed for the isolation of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitude of the resonance from each scattered partial wave, however, the phases are significantly different. The exact .pi.-radians phase shifts through the resonance and anti-resonance show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the difference in the phase of each, partial wave, the new method and RST generate different total resonance spectra.

  • PDF