• Title/Summary/Keyword: 공명초음파법

Search Result 45, Processing Time 0.025 seconds

자기 공명 영상술의 원리와 최근 연구 현황

  • 조장희;김영근
    • 전기의세계
    • /
    • v.38 no.8
    • /
    • pp.19-25
    • /
    • 1989
  • 현재 전세계적으로 퍼져있는 NMR-CT 시스템의 수를 살펴보면 약 370여기가 설치.운영되고 있으며 앞으로 계속 늘어날 전망이다. 국내에서는 1988 한국과학기술원과 금성통신에 의해 자체 개발된 2.0 Tesla 강자장 시스템이 최초로 서울대학병원에 설치 가동된 이래 여러병원에서 시스템들이 설치중에 있다. 첨단의로 진단장치로서의 핵자기 공명 영상법은 그 영상을 통하여 기존의 진단 장치보다 우월함을 증명하고 있으며 초음파 검사나 동위원소 검사 및 X선 전산화 단층 촬영술들을 장점을 두루 지니면서 그 영상법의 다양성 때문에 앞으로의 연구 및 발전에 대한 전망은 아주 밝다고 할 수 있다. 따라서 앞으로의 종합 영상 의료 진단 장치는 이 NMR-CT가 중심이 되어 발전할 것이라고 단언해도 무리한 생각은 아닐 것이다.

  • PDF

Development of a Method for Characterizing Single-Fiber Composite Interphase from Frequency-Domain Characteristics of Ultrasonic Scattered Waves (산란 초음파의 주파수 특성을 이용한 단일 섬유 복합재료의 인터페이즈 평가법 개발)

  • Kim, Woong-Ki;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • A method is proposed to characterize single-fiber composite interphases from the frequency-domain characteristics of scattered ultrasonic waves, and its feasibility is investigated theoretically. It has been shown that the locations and magnitudes of the peaks and valleys in the frequency domain are affected significantly by the interphase properties, which may indicate the effectiveness of the proposed method. Although the frequency-domain behavior is basically associated with the resonance of the fiber-interphase system, it is not dominantly affected by the scatterer's resonance unlike that in the case of acoustic wave scattering. Therefore, the conventional acoustic resonant scattering theory is not directly applicable to the characterization of composite interphases. In order to solve the inverse problem of predicting the interphase properties from the frequency-domain characteristics of the ultrasonic scattered waves, an artificial neural network has been constructed. This approach has demonstrated reasonable accuracy in most cases considered in this study.

  • PDF

The Nondestructive Inspection of the Ferrule for the Optical Connector by Resonant Ultransound Spectroscopy (공명초음파분광법에 의한 광컨넥터용 Ferrule의 비파괴검사)

  • 백경윤;황재중;양순호;민한기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1345-1348
    • /
    • 2003
  • The Ferrule for the Optical Communication Connector is the product to set the optical ares of an optical fiber very precisely. Therefore, it is required high expectations such as high dimensional precision and new including flaws. Up to new the optical instrument has been used for the defeat and shape inspection of the ferrule, but in the paper we examined the detectable defeat and expectation by using Resonant Ultrasound Spectroscopy(RUS). The RUS is the measurement which is to excite specimen and to inspect the difference at natural frequency pattern between acceptable specimen and specimen which has some defeats. We analyzed the difference of natural frequency pattern in the experiment using Spectrum Analyzer. And we compared the results in the experiment with those in the simulation from the explicit finite elements code, Nastran.

  • PDF

Nondestructive Evaluation of the Flaw in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파분광법을 이용한 페롤의 비파괴결함평가)

  • 김성훈;백경윤;김영남;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.108-117
    • /
    • 2004
  • In this paper, a measuring NDT(nondestructive testing) system using RUS(Resonant Ultrasound Spectroscopy) was built for nondestructive evaluation of the flaw in a ceramic Ferrule. The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. The RUS system is the measuring which is to exite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and specimen which has some defects. RUS system is configured of spectrum analyzer, power amplifier, PZT sensor and support frame. For defect evaluation by the RUS, we performed to measure natural frequency of Ferrule, both acceptable and cracked. In the case of Ferrule, the resonant frequency of cracked-Ferrule existed to higher frequency band than acceptable-Ferrule.

Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation (원자로 용접부의 국부적 미세조직 변화에 따른 동적탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Joo-Hag;Hong, Jun-Hwa;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.390-396
    • /
    • 2000
  • The dynamic elastic constants of the simulated weld HAZ (heat-affected zone) of SA 508 Class 3 reactor pressure vessel (RPV) steel were investigated by resonant ultrasound spectroscopy (RUS). The resonance frequencies of rectangular parallelepiped samples woe calculated from the initial estimates of elastic stiffness $c_{11},\;c_{12}\;and\;c_{44}$ with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class 3 steel were determined by iteration and convergence processes. Clear differences of Youngs modulus and shear modulus were shown from samples with different thermal cycles and microstructures. Youngs modulus and shear modulus of samples with fine-grained bainite were higher than those with coarse-grained tempered martensite. This tendency was confirmed from other results such as micro-hardness test.

  • PDF

Development of Laser-Based Resonant Ultrasound Spectroscopy(Laser-RUS) System for the Detection of Micro Crack in Materials (재료의 미세결함 검출을 위한 레이저 공명 초음파 분광(Laser-RUS)시스템 개발)

  • Kang, Young-June;Kim, Jin-Soo;Park, Seung-Kyu;Baik, Sung-Hoon;Choi, Nag-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Non-contacting, laser-based resonant ultrasound spectroscopy (L-RUS) was applied to characterize the microstructure of a material. L-RUS is widely used by virtue of its many features. Firstly, L-RUS can be used to measure mechanical damping which related to the microstructural variations (grain boundary, grain size, precipitation, defects, dislocations etc). Secondly, L-RUS technology can be applied to various areas, such as the noncontact and nondestructive quality test for precision components as well as noncontact and nondestructive materials characterization. In addition, L-RUS technology can measure the whole field resonant frequency at once. In this paper, we evaluated material characteristics such as resonant frequency, nonlinear propagation characteristic through the development of Laser-Based Resonant Ultrasound spectroscopy (Laser-RUS) System for the detection of Micro Crack in Materials.

Ultrasonic Measurement in Bovine Serum Albumin Solution (Bovine Serum Albumin 수용액의 초음파 측정)

  • Jong-Rim Bae;Seung Hyun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.329-334
    • /
    • 1992
  • Ultrasonic absorption was measured in bovine serum albumin (BSA) aqueous solution (50 g/l) in the frequency range from 100 kHz to 1600 MHz at neutral pH. Three experimental techniques were used to cover the wide frequency range : plano-concave resonator, conventional Bragg reflection, and high-resolution Bragg reflection methods. The absorption spectrum at neutral pH fitted the relaxation curve well using the distribution function of a mirror image of Davidson-Cole function. The relaxaition behavior was interpreted in terms of various degree of hydration of BSA molecules.

  • PDF

The Evaluation on the frequency Characteristics of the Optical Glass Lens by Resonant Ultrasound Spectroscopy (RUS법에 의한 광학기기용 렌즈의 주파수 특성평가)

  • Yang, In-Young;Kim, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • The optical glass lens is required high dimensional precision such as the lack of defect. In this paper, we examined the detectable defect by using the resonant ultrasound spectroscopy(RUS). The RUS is the measurement system which is to excite the specimen and to inspect the differences of resonant frequency pattern between acceptable specimen and specimen which has some defects. In this paper, for nondestructive evaluation by using RUS, we measured the resonant frequency of each specimen which is spherical and aspherical glass lens. With the results, we knew the polishing processing degree of spherical glass lens by the measured resonant frequency and could evaluate the characteristic of aspherical glass lens about some flaws.

Nondestructive Test of Optical Connector by Resonant Ultrasound Spectroscopy Method (공명초음파분광법에 의한 광컨넥터용 결합소자의 비파괴검사)

  • Kim, Sung-Hoon;Lee, Kil-Sung;Kim, Dong-Sik;Kim, Young-Nam;Jeong, Sang-Hwa;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a ceramic ferrule and a ball lens. The ceramic ferrules are cylinderical shape with $\phi$ 2.56mm diameter and l0mm in length. Crack lengths of these ferrules are 10.40$\mu$m, 21.18$\mu$m and 32.35$\mu$m. The spherical ball lens was made of BK-7 glass, one's diameter in 2mm and 5mm. RUS system is consisted of spectrum analyzer, power amplifier, PZT sensor and support frame. The principle of RUS is that the mechanical resonant frequency of the materials depends on density and the coefficient of elasticity. Rus system is based on that given resonant frequency of the materials can be represented by the function of density and the coefficient of elasticity, and it is applied to excite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and defective ones. Defect evaluation by RUS are performed to investigate the natural frequency measure of ferrule and ball lens.