• Title/Summary/Keyword: 공랭형 흡수식 냉동기

Search Result 3, Processing Time 0.028 seconds

Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature (5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석)

  • 윤희정;김성수;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

Simulation and Experimental Study on an Air-Cooled $NH_3/H_2O$ Absorption Chiller (공랭형 $NH_3/H_2O$ 흡수식 냉동기의 모사 및 실험적 연구)

  • Oh Min Kyu;Kim Hyun Jun;Kim Sung Soo;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1034
    • /
    • 2005
  • The objective of this paper is to study the effects of the cooling air mass flow rate and the heat input variation by the simulation and the experiment. An air-cooled $NH_3/H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect machine is 17.6 kW (5.0 USRT). The overall conductance (UA) of each component, the cooling capacity, coefficient of performance and each state point are measured with the variation of the cooling air mass flow rate and the heat input. It is found that the COP and cooling capacity increase and then decreases with increasing the heat input. It is also found that the COP and the cooling capacity increase and keep constant with increasing the cooling air mass flow rate. The maximum COP is estimated as 0.51 and the optimum cooling air mass flow rate is $217\;m^3/min$ from the present experiment.