• Title/Summary/Keyword: 공랭식

Search Result 57, Processing Time 0.024 seconds

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler (재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • In this study, we experimentally investigate the performance characteristics of a high-performance summer-cooling heat pump for an R410A by applying an air-cooled-type vapor-injection (VI) cycle. The devices used for the experiment consist of a VI compressor, condenser, oil separator, plate-type heat-exchanger, economizer, evaporator, and re-cooler. The experimental conditions employed for the cooling performance were divided into three cycles. First, in Cycle A, we apply a VI cycle and with no heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant in the re-cooler. For Cycle B, there is heat exchange, and for Cycle C, there is neither a VI cycle nor heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant. From the analysis results, we observe that the performance was highest in the VI cycle with heat exchange between the evaporator outlet refrigerant and the VI cycle suction refrigerant (Cycle B), while it was lowest in Cycle C without application of the VI cycle. Moreover, the cooling coefficient of Performance ($COP_C$) averaged 3.5 in Cycle B, which was 8.6% higher than the corresponding value in Cycle A, and 33% higher than that in Cycle C.

Design and performance evaluation of fish-luring system using the air-cooled LED lamp for jigging and angling boat (채낚기 어선용 공랭식 LED 집어시스템의 설계 및 성능평가)

  • Bae, Bong-Seong;Park, Byoung-Jae;Jeong, Eui-Cheol;Yang, Yong-Su;Park, Hae-Hoon;Chun, Young-Yull;Chang, Dae-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.2
    • /
    • pp.85-95
    • /
    • 2009
  • The fishing lamp is a fishing gear that gathers fish at night. But the cost of oil, which is used to light fishing lamp, has been risen significantly up to 30-40% of total fishing costs. Therefore it is very urgent to develop an energy economical fishing lamp in order to solve the business difficulties of fisheries. Under this background, this research aims at developing a fishing lamp for squid jigging and hairtail angling fishery using the LED, which has excellent energy efficiency and durability. The LED fishing lamp developed can be controlled to fix a fit direction of fish shoal deep because a fishing lamp can be adjustable up and down directions. One unit of fishing lamp has about an 80Watt capacity and the frame of fishing lamp is made of aluminium to emit generated heat of LED to outside. The LED lamp developed was highly durable, only 5.7% of emitting efficiency decreased for 18 months. The illuminance of a unit LED lamp was 2,070lux at 1m and 21lux at 10 m distance, and the intensity of LED lamp system emitted 2,580lux and 400lux at the respective distances. After development of this fishing lamp, 100 units are installed on operating fishing vessels. Experimental results show that energy consumption of squid jigging and hairtail angling was reduced by 40% and 87%, respectively. In conclusion, our methods showed elevated fishing power, compared with traditional fishing method: 37.7% for squid jigging and 24.5% for hairtail angling.

The Fundamental Studies and Development of the Modified See - Through Hollow Cathode Glow Discharge Cell for Atomic Emission Spectrochemical Analysis (원자 방출 분광 분석을 위한 개선된 관통형 속빈 음극관 글로우 방전 셀 개발 및 기초 연구)

  • Lee, Sung-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Borden, Stuart;Kim, Kyu-Whan;Lee, Change-Su;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.502-508
    • /
    • 2002
  • See-through hollow cathode glow discharge cell has been developed for the trace analysis of metal ions. The systems consists of new glow discharge cell improved the cooling system. In the case of previous type of hollow cathode glow discharge cell, it had been utilized for the trace analysis of metal ions but it had a problem that the plasma becomes unstable by air-cooled device. In this study, the modified hollow cathode glow discharge cell has been developed in order to minimize the problem associated with the air-cooled device. thus the stability of the plasma with water-cooling device has been improved and also the higher plasma temperature has been measured. The fundamental characteristics of modified systems have been investigated. And the discharge parameters, such as discharge pressure, material, and diameter of cathode, have been studied to find optimum discharge conditions.

A Study on the Evaluation of Cabin Thermal Environment and Marine Fuels for Fuel Saving in Summer According to the Improvement of Air Conditioning System - The Case of Training Ship SAENURI - (공조시스템 개선에 따른 하절기 선실 온열환경 평가 및 유류절감에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Han, Seung-Hun;Kim, Hong-Ryel
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2014
  • In this study, Mokpo national maritime university Training ship Centralizes Air Conditioning System was upgraded by installing onboard an Air-cooled Air conditioner. This resulted in the improvement of the performance and operation. This study compared refrigeration performance to former equipment and improving one. And through the actual measurement study about the cabin thermal environment, it will be used as basic data for marine air conditioning design and plan in the future. At same climate condition, when the Centralized Air Conditioning System and an improved air conditioning system operated, cabin temperature was at $24{\sim}28^{\circ}C$, humidity was 55~75 % as comfortable condition, Generator load measurement showed a saving of 48KW in the average load and 8 % in the full load factor. This also resulted in a saving of daily fuel oil consumption(FOC) at around 222 [${\ell}/day$] average. On the other hand, one cadet cabin(Cadet No.21) indicated a higher temperature due to heat transmission of engine room. It found us not to consider installing additional diffuser to reduce the heat transmission.

Effects of Precooling and Packaging Methods on Quality of Asparagus Spears during Simulated Distribution (아스파라거스의 모의 유통 과정에서 예냉 방법과 포장 조건이 품질에 미치는 영향)

  • Yoon, Hyuk Sung;Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • This study was conducted to determine effects of precooling and storage methods on asparagus spears' quality such as changes of fresh weight and color during simulated export distribution. Two types of precooling methods, air cooling and hydrocooling, were applied prior to packaging by comparing with no precooling as a control. Asparagus spears were packed with oxygen transmission rate (OTR) film for modified atmosphere packaging (MAP) and perforated (PF) film for a conventional packaging. All treatments were stored at $8^{\circ}C$ for 20 hours, and subsequently at $4^{\circ}C$ by final storage day, which is simulated distribution temperature condition from Yanggu, Korea to Shimonoseki, Japan. The half cooling time was 12 minutes for air cooling and 15 seconds for the hydrocooling, indicating precooling process of asparagus spears faster with the hydrocooling. Rates of respiration and ethylene production were lowest with hydrocooling. Fresh weight loss was higher, approximately 11%, at the control condition in conventional storage, compared with the MAP, less than 0.5%. Carbon dioxide and oxygen content in the MAP was in the permissible ranges for asparagus spears under recommended CA/MA conditions under both the air cooling and hydrocooling. Ethylene content in the film package was lower with the precooling treatment. Firmness of stems was lowest with the hydrocooling prior to the MAP. Visual quality, off-odor, and hue angle value were best with hydrocooling prior to the MAP. In conclusion, the combination of hydrocooling with the MAP is effective in preserving quality during the export distribution process.

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.