• Title/Summary/Keyword: 공동 형상

Search Result 215, Processing Time 0.021 seconds

Drag Reduction by Passive Control of Condensation Shock Wave in a Transonic Airfoil (천음속 익형에서 발생하는 응축충격파의 피동제어에 의한 항력 감소)

  • 백승철;최영상;권순범;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.10-10
    • /
    • 1998
  • 천음속 익형에서 발생하는 응축충격파와 경계층의 간섭을 피동제어 하여 항력감소에 대한 연구를 2.5$\times$7$\textrm{cm}^2$ 천음속 풍동에서 수행하였다. 익형표면에 설치한 정압공으로 정압을, 익형후방에 설치한 8개의 Pitot probe로 전압을 동시에 측정하여 충격파를 통한 에너지의 손실과 항력의 변화를 계산하였고, 또한 유동장과 충격파의 형상을 가시화하기 위해 슈리렌 가시화 시스템을 사용하였다. 실험은 NACA 0012 익형에서 기공률 변화에 따른 피동제어의 항력감소 초과를 조사한 다음 NACA 64-018 익형에서는 기공률과 공동의 크기의 변화가 미치는 효과를 연구하였다. 피동제어의 개념은 충격파가 발생하는 하부벽을 다공벽으로 만들고 그 아래를 공동으로 만들면 충격파 후방의 상대적으로 높은 압력이 기류의 일부를 공동으로 자연스럽게 유입시키고 다시 공동에서 낮은 압력의 충격파 상류로 유출시키는 것이다.

  • PDF

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

A Boundary Method for Shape Design Sensitivity Analysis in Shape Optimization Problems and its Application (경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용)

  • Kwak Hyun-Gu;Choi Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.255-263
    • /
    • 2005
  • This paper proposes an efficient boundary-based technique for the shape design sensitivity analysis in various disciplines. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in the problems. The formula can be conveniently used for gradient computation in a variety of shape design problems. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite. Perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The potential flow problems and fillet problem are chosen to illustrate the efficiency of the proposed methodology.

Laboratory Experiments of a Ground-Penetrating Radar for Detecting Subsurface Cavities in the Vicinity of a Buried Pipe (매설관 주변 지하 공동 탐지를 위한 지하 탐사 레이다의 모의실험)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this paper, a feasibility on a ground-penetrating radar for detecting subsurface cavities near buried pipes has been investigated. The experimental setup was implemented by employing an impulse ground-penetrating radar system, a xy Cartesian coordinate robot, an underground material filled tank, a metal pipe and a simulated cavity model. In particular, the simulated cavity model was constructed by packing Styrofoam chips and balls, which have both similar electrical properties to an air-filled cavity and a solid shape. Through typical three experiments, B-scan data of the radar have been acquired and displayed as 2-D gray-scale images. According to the comparison of B-scan images, we show that the subsurface cavities near the buried pipes can be detected by using the radar survey.

A Numerical Study on the Characteristics of the Supercavitation and Hydrodynamic Forces Generated in a Supercavitating Underwater Vehicle with Angle of Attack (받음각을 갖는 초공동 수중 운동체에서 발생하는 초월공동과 유체력 특성에 대한 수치적 연구)

  • Jeon, Yunho;Park, Jeonghoon;Jeon, Kwansoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.214-224
    • /
    • 2021
  • Recently, as the technology of the supercavitating underwater vehicle is improved, the necessity of research for maneuvering characteristics of the supercavitating underwater vehicle has emerged. In this study, as a preliminary step to analyzing the maneuverability of a supercavitating underwater vehicle, the characteristics of cavity shapes and hydrodynamic forces generated in a supercavitating underwater vehicle with an angle of attack were evaluated numerically. First, the geometry was designed by modifying the shape of the existing supercavitating underwater vehicle. The continuity and the Navier-stokes equations are numerically solved, and turbulent eddy viscosity is solved by the k-ω SST model. The results present the characteristics of cavity shape and the hydrodynamic forces of the designed geometry with an angle of attack.

Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation (팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석)

  • Lee, Kicheol;Choi, Byeon-Ghyun;Park, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to evaluate the suitability of emergency underground cavity restoration method filling cavity with expansive material based on numerical analysis. For the numerical analysis, experiments were conducted to evaluate properties of expansive material. Based on the measured expansion pressure of the expansive material from the experiment, behavior of underground cavity restoration with various cavity dimensions (variation of height and width of rectangular-shape cavity) was numerically assessed. As a result of analysis, the vertical displacements of the top and bottom of cavity were significantly influenced by the cavity width and lateral displacements of cavity sides were highly dependent on cavity height. These vertical and lateral displacements were increased with increasing expansion pressure of expansive material. Also, when the expansion pressure was applied, the vertical displacement of the upper surface layer of the road was less dependent on cavity height, and was greatly influenced by cavity width.

Numerical Analysis on the Influence Factors of Cavity Occurrence in the Stability of the Underground with Cavity (도로 하부지반에서 발생된 공동이 지반 안정성에 미치는 영향에 관한 수치해석)

  • Nam, Jun-Hee;Kim, Jong-Chul;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, finite element numerical analysis was performed considering various influence factors(cavity shape and size, pavement thickness and size of traffic load) in order to analyze the impact factors in the underground of the road where the cavity occurred and to evaluate the stability of the ground. In order to verify the reliability of the numerical analysis method applied in this study and the results it was compared and analyzed with the results of previous studies and field measurements. The correlation between the influence factors was analyzed through the distribution of vertical displacement obtained from the numerical analysis results, the distribution of surface settlement and surface settlement, the distribution of the stress ratio, and the distribution of the safety factor. As a result, it was confirmed that as the size of the cavity and traffic load increased and the thickness of the pavement decreased, the vertical displacement and surface settlement at the top of the cavity increased. Also, the shape of the cavity was square, the stability of the ground was significantly reduced compared to the case of a circular cavity. Through these results, it was possible to confirm the overall stability of the lower ground of the road where the cavity was generated.

Numerical Analysis of the High-Subsonic Cavity Flows over a Curved Wall (곡면 벽을 지나는 고아음속 공동 유동에 관한 수치해석적 연구)

  • Ye, A Ran;Das, Rajarshi;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Most of the work has been done till now focused on flows over wall mounted cavities in a straight wall where the incoming flow is uniform. However, the investigation on such kind of flow over a cavity mounted on the curved walls has been seldom reported in the existing literatures. In the present study, the numerical analysis was performed to investigate the cavity flow mounted on the curved walls. The effects of wall shape, the curvature radius and the flow Mach number, were investigated for high-subsonic flows. The results show that the static pressure of cavity floor increases as the L/R increases. This effect is found to be more significant when the flow Mach number is higher. The cavity drag for the curved walls are higher as compared with that of straight wall.