• Title/Summary/Keyword: 공동 소음

Search Result 382, Processing Time 0.026 seconds

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

Experimental study on the sound attenuation of the fire alarm sounder system in apartment buildings (공동주택 화재경보 발생음 특성에 관한 실험연구)

  • Lee, Min-Joo;Kang, Hee-Hyuk;Kwon, Bong-Suk;Kim, Myung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1162-1168
    • /
    • 2007
  • In many fire emergencies, the audible fire alarm signals are very important to save the occupant's life. But as the sound insulation of building elements has been improved, it is more difficult for occupant to recognize the fire alarm signals when the fire alarm worked. This is the study to show the sound attenuation of the fire alarm sounder system in apartment buildings. We measured and analyzed the sound attenuation level in 17 units, and the results were compared with the minimum sound level at sleeping area by NFPA(National Fire Protection Association) 72. When only the fire alarm worked in stair hall, the sound levels in bedroom were in the range of $30.6{\sim}42.8dB(A)$ and the differences between sound level and ambient sound level in bedrooms were in the range of $7.1{\sim}13.8dB(A)$. And when the emergency broadcasting device in the livingroom and the fire alarm worked simultaneously, the sound levels in bedrooms were in the range of $54.2{\sim}63.0dBA$. Finally, it was showed that the fire alarm sounder system didn't give a sufficient sound level in bedroom to awake out of sleep.

  • PDF

Design of a Helmholtz Resonator for Noise Reduction in a Duct Considering Geometry Information: Additional Relationship Equation and Experiment (형상 정보를 고려한 덕트 소음 저감용 헬름홀츠 공명기 설계: 추가 관계식과 실험)

  • Ryu, Hokyung;Chung, Seong Jin;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.459-468
    • /
    • 2014
  • An additional relationship equation is numerically obtained to increase the accuracy of the conventional equation for obtaining the resonant frequency of a resonator. Although the conventional equation is widely used in industry because of its simplicity, it does not provide enough information on the cavity or the neck of the resonator for noise reduction in a duct. Resonator designers have difficulty implementing resonator design owing to the uncertainty in geometry presented by the well-known formula for determining the resonant frequency. To overcome this problem, this work determines an approximate equation using results of numerical calculation. To this end, shape parameters of the neck and cavity of a resonator are defined, and an equation describing the relationship between them is derived by adjusting the peak frequency in the transmission loss curve of a resonator to its resonant frequency. The application and validity of the derived equation are investigated in a numerical simulation and an acoustic experiment, respectively.

Prediction and Reduction of Alarm Sound Propagated through Elevator Shaft (엘리베이터 샤프트를 통한 경보음 전달 예측과 개선)

  • Jeong, Jeong-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.89-96
    • /
    • 2019
  • In this study, alarm sound generated as a priority alert system propagation through an elevator shaft in apartment buildings were simulated using room acoustic simulation software. The simulations were conducted on three kinds of elevator hall plan with a different number of elevators and placement. First, the elevator shaft without sound absorption material was simulated as a condition of the present. When the distance from the alarm sound generating floor became farther, alarm sound level was decreased. However, the alarm sound level three-floor distance was about 54 dB(A)~56 dB(A) which were louder than a background sound level of typical apartment buildings. Sound absorption material placement proposed by previous studies were simulated and the alarm sound levels were decreased about 12 dB~16 dB. These levels were similar or lower than the background level of apartment buildings. From these results, it can be concluded that placing sound absorption material on the surface of the elevator shaft wall can be one of the methods to control the alarm sound as regulated in NFSC.

A study on the Plumbing system noise of closet bowl by water supply pressure (급수압에 따른 대변기 설비소음에 관한 연구)

  • Kim, Hang;Choi, Eun-Suk;Ko, Kwang-Pil;Gl, No-Gab;Lee, Tai-Gang;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.11-16
    • /
    • 2006
  • It appraises that use an indoor noise standard, a NC value which is a noise appraisal, a dB(A) value, a N value in foreign country because it doesn't yet ready an appraisal standard in domestic. Also, It appraises that the supply and drainage noise which could change water supply pressure, $4kg/cm^2,\;3kg/cm^2,\;2kg/cm^2,\;1.5kg/cm^2,\;1kg/cm^2$, bring about a noise and inquires how does noise level indicates according to each instruments. In case of a water supply pressure standard, $3kg/cm^2$, a C-605is $3{\sim}5dB(A)$ lower than another instruments in directly overhead stories. It appears that all of them is similar to level in directly under level except c-407(2)Analyzed the NC value, c-605is the lowest level, NC-50, of a water supply pressure, $4.0kg/cm^2$, c-407 is the highest level, NC-55.(3) In case of N value, which is one of water supply methods in Japan, it is the lowest level, N-55, of a water supply pressure, $4.0kg/cm^2$ same as NC value and C-407is the highest level, N-60.(4) In case of water supply that is likely to noise level, It appears 6dB(A) level gap each instruments, and C-605 is the lowest level, 63.9dB(A).

  • PDF

Comparisons of Rotor Performance and Noise between Candidate Light Civil Helicopters (민수헬기 대상기종 로터 공력성능 및 소음 비교)

  • Chung, Kihoon;Kang, Hee Jung;Kim, Do-Hyung;Yun, Chul Yong;Kim, Seungho;Park, Kuhwan;Lee, Sang-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.726-733
    • /
    • 2013
  • The rotor blade of helicopter is the core component determining helicopter performance and requiring low noise and low vibration because the blade becomes the major source of noise during flight. The performance analysis of candidates rotor blades is very critical because LCH(Light Civil Helicopter) will be developed parallel with LAH(Light Armed Helicopter) as an international upgrade program based on the existing platform of foreign civil helicopter. This research was aimed to recognize the performance of the candidates rotor blades compared with the newly developed foreign rotor blades and to investigate the feasibility about developing korea unique shape rotor blades by analysis the rotor performance and noise. The result of this research can be used for the target performance index during negotiation with foreign helicopter company and developing korea unique shape rotor blades.

Characteristics of Reducing the Water-drainage Noise of Toilet-bowl According to the Composition of Water Drainage Piping Materials of the Bathrooms of Apartment Housing (공동주택 욕실 배수배관 자재 구성에 따른 양변기 배수소음 저감 특성)

  • Jeong, A-Yeong;Kim, Kyoung-woo;Shin, Hye-kyung;Yang, Kwan-seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • Water supply and drainage noise in the bathroom is recognized as one of the main noises, along with the floor-impact sounds, in apartment housings. Recently, to solve such noise issues, a new construction method of installing the piping on the slab has been adopted. rather than the traditional method of penetrating the piping through the slab between the upper and the lower bathrooms. However, this new method has limitations due to high costs and constructional difficulties. Therefore, this study was conducted to develop noise reducing piping and elbows, where the noise can be reduced simply by replacing the existing pipings. The noise level was measured in a laboratory by installing the horizontal drainage piping (three types) and the elbows (three types) developed in this study. The results showed that the horizontal pipings reduced the noise level in LAmax by 0.3 dB(A)~1.0 dB(A), as compared to the existing pipings (VG2), indicating an insignificant noise reduction effect. The elbow reduced the noise level in LAmax by 5.5 dB(A) ~ 11.5 dB(A), as compared to the existing elbow (DRF elbow), with the result of reducing the noise level at all frequencies evenly. Consequently, it was shown that using the elbows is more effective in reducing the water-drainage noise from the toilet than using the horizontal pipings.

Study on the Design of Butyl Rubber Compound and Noise Reduction System for Sound Insulation (소음 차단 성능 향상을 위한 부틸 탄성체 배합 및 진동제어 시스템 디자인 연구)

  • Kim, Won-Taek;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • The noise between floors of apartment has been hot issue nowadays. In order to improve the noise insulation performance, we proposed the antivibration rubber system which can be applied to the floor system for sound insulation. Among various types of elastomer, butyl rubber showed the good aging characteristic, low rebound resilience and high damping factor. Thus, the butyl rubber was selected as a basic rubber for antivibration rubber system. The effects of type and loading amounts of carbon black on antivibration properties of butyl rubber were studied. The increase of surface area and the content of carbon black resulted in high bound rubber fraction, high mechanical property, low rebound resilience, and high damping factor of butyl rubber. Based on the results of this study, the new antivibration rubber was prepared and applied to the floor system for sound insulation. The impact sounds of floor system proposed in this study were 40 dB and 43 dB in cases of light weight and heavy weight impact sound, respectively.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF