• Title/Summary/Keyword: 공동체 공학

Search Result 119, Processing Time 0.025 seconds

Planing Avoidance Control for a Supercavitating Underwater Vehicle Based on Potential Functions (포텐셜함수 기반 초공동 수중운동체 플레이닝 회피 제어 연구)

  • Kim, Seonhong;Kim, Nakwan;Kim, Minjae;Kim, Jonghoek;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, we focus on planing avoidance control for a supercavitating underwater vehicle based on the potential function method. The planing margin can be calculated using the relative position between the cavity center and vehicle center at the end of the vehicle. The planing margin was transformed into a limit variable such as the pitch angle and yaw angle limit. To prevent the vehicle attitude from exceeding the limit variable, a potential function based planing envelope protection method was proposed. The planing envelope protection system overrides commands from the tracking controller, and the vehicle attitude converges to a desired angle, in which the potential function is minimized. Numerical simulations were performed to analyze the physical feasibility and performance of the proposed method. The results showed that the proposed methods eliminated the planing, allowing the vehicle to follow tracking commands.

Spoken language Translation System Based on PDMT (PDMT 번역 방법론에 기반한 대화체 음성 언어 번역 시스템)

  • Yun, Seung;Yu, Cho-Rong;Choi, Mi-Ran;Oh, Seung-Shin;Park, Jun;Lee, Young-Jik
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.279-283
    • /
    • 2003
  • ETRI가 참여하고 있는 자동 통역 관련 국제 컨소시엄인 C-STAR에서는 여행자 영역의 대규모 다국어 병렬 말뭉치를 공동으로 구축하였고, 현재 각 기관에서는 이를 이용한 대화체 음성 언어 번역 시스템을 개발 중이다. ETRI에서는 핵심어 처리, 통계정보를 이용하는 구 단위 자동 설정, 설정된 구의 자동대응 및 재배치 등을 특징으로 하는 구 기반 직접 번역 방식(PDMT: Phrase-based Direct Machine Translation)의 번역 방법론을 제안하고 관련 연구를 진행하고 있다. 본 논문에서는 ETRI 대화체 음성 언어 번역 시스템의 구성에 대해 알아보고 PDMT 번역 방법론의 등장 배경과 그 구체적인 번역 방법 및 특징에 대해 자세히 논의하기로 한다.

  • PDF

NEAR=FIELD DIFFRACTION PATTERN BY A SPHERICAL AIR CAVITY IN A DIELECTRIC MEDIUM (유전체 매질내에 있는 구형공동에 의한 근거리 회절패턴)

  • 강진섭;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.19-30
    • /
    • 1995
  • Diffraction patterns of the copolarized and the crosspolarized total electric fields by a spherical air cavity in a dielectric medium are analyzed in the forward near-field region when the wavelength of the incident plane wave is comparable to one half of the cavity radius. It is shown that double nulls and dips of the copolarized and the crosspolarized total electric fields exist in the measurement plane tansverse to the propagating direction of the incident field, and their dependences on the frequency, the distance of the measurement plane, and the measurement angle are analyzed.

  • PDF

Earthquake Simulation Tests on a 1:5 Scale 10-Story R.C. Residential Building Model (1:5 축소 10층 내력벽식 R.C. 공동주택의 지진모의실험)

  • Lee, Han-Seon;Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.67-80
    • /
    • 2011
  • This paper presents the results of shaking table tests on a 1:5 scale 10-story R.C. wall-type residential building model. The following conclusions are drawn based on the test results. (1) The model responded linear elastically under the excitations simulating an earthquake with a return period of 50 years, and showed a nonlinear response under the excitations simulating the design earthquake of Korea. (2) The model showed a significant strength drop under the maximum considered earthquake, with a return period of 2400 years. (3) The major portion of the resistance to lateral inertia forces came from the walls used for the elevator and stair case. (4) Finally, the damage and failure modes appear to be due to the flexural behavior of walls and slabs. A significant deterioration of stiffness and an elongation of the fundamental periods were observed under increased earthquake excitations.

Engineering Geological Characteristics of volcanic rocks of the Northwestern Cheju Island, Korea (제주도 북서부 지역 화산암체의 지질공학 특성)

  • 김영기;최옥곤
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 1991
  • The geology of the northwestern Cheju Island consist of Pleistocene to Holocene volcanic rocks which could be devided into basalt layers, the Sungsan Formation composed mainly of volcaniclastic debris exposed along the shoreline, and more than 30 cinder cones. Columnar joints and vesicles are dominant in the basalts of the Pyeosunri and the Sihungri basalt Formations. Volcaniclast and clay layers are intercalated in basaltic layers. When volcaniclast of the interlayers would be swept away by ground water and some caves of channel shape would be formaed. Overlying lavas cracked by columnar joints could be easily destroyed, collapsed and/or sunk. Geomechananical nature of the rocks such as strength may be controlled by the vesicularity(size, shape, and orientation of the vesicles) of the rocks. On the basis of vesicularity as a factor of strength, the effective strength ratio(Ke) could be calculated as Ke=0.3-0.72, in which the smaller Ke value reflects the lower in internal stress. In the studied area, the strength of the rocks tends to decrease as increasing in altitude of provenance of the rocks. The rocks in the area show relatively low values in angle of failure strength($\phi$) ranging from 10$^{\circ}$ to 30$^{\circ}$. In conclnsion, the rocks in question, majority of which the critical value exceeds 0.33, belong to the unstable rocks in the aspect of engineering geology.

  • PDF

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Conceptual Design of An Underwater Vehicle Powered by Water-breathing Ramjet (해수흡입 램젯추진 수중운동체 개념설계)

  • Um, Jaeryeong;Lim, Hyunae;Jin, Wansung;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.50-60
    • /
    • 2014
  • Many countries are paying efforts to the research and development of water-breathing ramjet propulsion for submersible vehicle with the super-cavitation which makes traveling at high speed in underwater possible. In this study, a conceptual design of an underwater vehicle with water-breathing ramjet was carried out. Mission profiles and operating conditions are determined by examining the operation environment. Drag is estimated based on the theories of super-cavitation and fluid mechanics. The sizing and performance analysis of the components were performed using thrust required, thrust and specific impulse of designed engine were verified.

Effect of Orifice Length on Particle Distribution in Particle-laden Jet (입자 부상 제트에서 오리피스 길이가 입자 분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Paik, Kyong-Yup;Khil, Taeock;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • As a propellant of a high speed underwater vehicle, the hydro-reactive solid metal particles using seawater as a oxidizer maximizes its specific impulse when the solid metal particles and the seawater are uniformly mixed in the combustion chamber. The purpose of this study is to investigate the effects of injector geometry on the particle distribution of similarity point of view. For the purpose of this similarity of the mean velocity and particle number density along the radial direction was measured by Particle Image Velocimetry(PIV).

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Prediction of Ground-Condition Ahead of the Tunnel Face by Using 3-Dimensional Absolute Displacements (3차원 절대내공변위를 이용한 터널 막장전방의 지반면화 예측기법)

  • Lee, In-Mo;Gang, Gi-Don;Park, Gwang-Jun
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-32
    • /
    • 1998
  • has been much progress in theories and construction techniques to secure the stability of the underground structures. Recently, several studios have shown that it is possible to predict the existence of discontinuities ahead of a tunnel face by analyzing 3-dimensional absolute displacements measured during tunnel excavation. This paper concentrated on the development of a methodology to predict the existence and location of the discontinuities, or the void space(abandoned mine) , by performing 3-dimensional FEM analysis and considering the stress relocation caused by arching effect during excavation. Also, this study tried to verify deformation for choosing the most suitable support system. The results of this study might provide a way of safer and economical tunnel construction by utilizing the in-situ monitoring data.

  • PDF