• Title/Summary/Keyword: 공기 터빈

Search Result 284, Processing Time 0.026 seconds

Numerical and Experimental Investigation on the Supersonic Impulse Turbine Design Performance Estimation Methodology (초음속 충동형 터빈의 설계성능 검증방법에 대한 해석 및 시험적 고찰)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • A methodology of design performance estimation for the supersonic impulse turbine was investigated. Relations of similarity condition and test nozzle area ratio were derived. Comparison of efficiencies between the turbines with real nozzle and test nozzle are made numerically and experimentally. The CFD results and test result confirmed that the turbine with test nozzle was able to predict real turbine performance. In addition, design performance of the supersonic impulse turbine also could be estimated using real nozzle in air-medium test. In this case, design efficiency was found at the pressure-ratio and velocity-ratio of similarity condition of test nozzle.

Study on the Turbine Performance of 7 ton Liquid Rocket Engine Turbopump (7톤급 액체로켓 엔진 터보펌프 터빈 성능 연구)

  • Lee, Hanggi;Shin, Juhyun;Choi, Changho
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was performed to evaluate the turbine performance of a turbopump in the third stage engine of the Korea Space Launch Vehicle-II. The turbine is a supersonic impulse type with a single rotor. One nozzle is for starting and four remaining nozzles are for steady operation. A similarity test was carried out in the high air test facilities at the Korea Aerospace Research Institute. Test results showed that turbine efficiency changed much more from rotational speed variations than by pressure ratio variations. These results showed characteristics similar to other supersonic impulse turbines.

Preliminary Design Procedure of Electric Starting System for Small GasTurbine Engine (소형 가스터빈엔진 전기시동 시스템 기본설계 절차)

  • Lim, Byeung-Jun;Rhee, Dong-Ho;Jun, Yong-Min;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • For gas turbine engine starting, external power should be supplied with engine to accelerate to suitable rotational speed for air and fuel ignition conditions. Electric starting system for small gas turbine engine has simple system and light weight, so it is generally used for small aircraft. For system analysis of gas turbine engine electric starting system, Characteristics of battery, start motor, engine drag torque should be analyzed and theirs temperature effects should be considered. In this paper, preliminary design procedure of small gas turbine engine electric starting system and major design parameters were described.

  • PDF

Effect of Tip-Clearance on the Performance of a Supersonic Impulse Turbine (초음속 충동형 터빈의 팁간극에 따른 성능변화 연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.117-121
    • /
    • 2008
  • The effect of tip clearance on the performance of a supersonic impulse turbine was investigated experimentally. Test was performed using high pressure air in wide ranges of pressure ratio and rotational speeds. Test revealed that efficiency gradient of the subject turbine at a reference test point was a very low value of 0.05. Turbine efficiency was varied non-linearly with respect to tip clearance. It has been found that efficiency gradient is proportional to the cube of rotational speed at a fixed turbine pressure ratio. It also has been found that efficiency gradient shows its minimum at a reference test pressure ratio irrespective of rotational speeds.

  • PDF

Development of a Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • A velocity-compounded(VC) turbine of the 75ton turbopump was developed as an improved performance backup for a single-rotor base-line turbine. Curvic coupling was used for the connection between rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that the developed VC turbine can generate 20.5% higher specific power than the base-line turbine. It has been measured that $1^{st}$ rotor of the subject turbine generates 74.1% of total power at design operating condition.

Study of a New Air Turbine for Wave Energy Conversion (파력발전용 새로운 공기터빈 개발에 관한 연구)

  • Kim, Tae-Ho;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.955-960
    • /
    • 2001
  • In order to develop an efficient turbine for wave energy conversion suitable for actual ocean conditions, a new type of the air turbine with staggered blades has been investigated experimentally. Experiments have been carried out under steady flow conditions. Both the running and starting characteristics under sinusoidally oscillating flow conditions are simulated by a CFD method using a quasi-steady analysis. It is known that the air turbine with staggered blades gives a better performance compared with conventional Wells turbine, and a proper design factor of the air turbine is discussed for the setting angle of the rotor.

  • PDF

An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

전력기기의 에너지절약 및 이용 합리화

  • KOREA ELECTRIC ASSOCIATION KOREA ELECTRIC ASSOCIATION
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.309
    • /
    • pp.83-87
    • /
    • 2002
  • 전력계통에서의 발전, 송변전, 배전의 각각에 대한 에너지절약 및 이용 합리화를 미쓰비시(삼릉)전기는 여러 방면에서 노력하고 있으며, 여기서는 전력기기에 대한 그간의 노력에 대하여 기술한다. 발전에 관해서는 공기냉각과 수소냉각 터빈발전기의 효율 향상으로 성(省)에너지화를 지향하고 있다. 동사에서는 세계 최대급의 공기냉각 터빈발전기를 제작하여 수소냉각기와 거의 동등한 높은 효율을 얻고 있다. 송변전에 대해서는 전력용 대형 변압기의 본체 체적 축소, 신(新)절연구조의 채용으로 대형변압기의 설치면적을 반감시키고 손실저감도 실현시킬 수 있었다. 성숙기종으로 생각되는 분야에 대해서도 새로운 발상으로 더욱 개선해 나갈 계획이다. 배전분야에 대해서는 전력의 합리적 사용이나 고효율 변압기의 채용에 의한 전력삭감 등 필요성이 재검토되고 있다. 동사에서는 배전설비 구성의 일익을 담당하는 손실이 극히 적은 수퍼 고효율 유입변압기를 개발, 배전분야에서 활용되고 있다. 성(省)에너지를 위한 발전기의 응용 예의 하나로 자연에너지를 이용하는 풍력발전을 들 수 있다. 동사가 개발하여 실용화되고 있는 풍력발전기는 회전자 자극(磁極)에 영구자석을 사용한 동기발전기를 사용하고 있어, 여자장치나 기어기구가 불필요하여 전기적, 기계적인 손실을 경감시키고 있다.

  • PDF

LNG 냉열을 이용한 복합발전시스템의 성능향상에 관한 연구

  • Oh, Se-Gi;Kim, Byung-Il;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.3-8
    • /
    • 1997
  • 본 연구에서는 복합발전시스템의 외기온도 변화로 인한 출력저하 문제를 극복할 수 있는 LNG 냉열 이용 복합발전 시스템을 제안하였다. 본 연구에 의해 제안된 LNG 냉열 이용 복합발전 시스템의 타당성을 검토하기 위해 ASPEN과 GateCycle을 이용한 시뮬레이션 모델을 구성하였고, 모델에 의해 예측한 결과를 실제 발전소 성능시험결과와 비교하여, 본 시뮬레이션 방법의 예측정확도를 검증하였다. 본 시뮬레이션 방법을 토대로 LNG 냉열을 이용하여 가스터빈의 유입공기를 냉각시켰을 경우의 복합발전 시스템 성능변화를 분석하였다. 그 결과 LNG 냉열을 이용하여 유입 공기를 원하는 온도까지 냉각시켜 하절기에도 출력을 일정하게 유지시킬 수 있음을 확인할 수 있었고, 이를 위한 기스터빈과 LNG 간의 열교환기 설계기준도 제시하였다.

  • PDF

Aerodynamic characteristics of a vertical axis wind turbine blade (수직축 풍력터빈 블레이드의 공기역학적 특성)

  • Shin, Jee-Young;Son, Young-Seok;Cha, Duk-Guen;Lee, Cheol-Gyun;Hwang, I-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.