• Title/Summary/Keyword: 공기 제어

Search Result 923, Processing Time 0.024 seconds

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.