• Title/Summary/Keyword: 공기질개선

Search Result 124, Processing Time 0.028 seconds

An Experimental Study on the Properties of Cement Matrix for Improving Indoor Air Quality by Phytoncide (실내 공기질 개선을 위해 피톤치드를 혼입한 시멘트 경화체 특성에 관한 실험적 연구)

  • Kim, Hyeon-Sung;Jung, Yoong-Hoon;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.64-65
    • /
    • 2019
  • Formaldehyde has been classified as a first-class carcinogen by international cancer research organizations. Formaldehyde causes various diseases such as sick house syndrome, building syndrome, chemical sensitivity etc. Formaldehyde is diffused from building materials and furniture. It has been published that research of phytoncide can reduce formaldehyde. In this study, we used phytoncide with cement matrix to reduce formaldehyde. As a result, the cement matrix strengths was increased slightly and formaldehyde has been reduced over time.

  • PDF

A Study on Accelerative Algorithm for Medical Images Volume Rendering (의료영상의 체적가시화를 위한 가속 알고리즘에 관한 연구)

  • 임현우;이동혁;정용규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.228-233
    • /
    • 2000
  • 체적가시화(Volume Rendering)는 단면촬영기나 표면인식치 등을 이용해 읽어 들인 Data를 원래의 형태로 화면상에 보여 주는 것으로 일반적인 방법이 Sur face Rendering과 Volume Rendering이 있다. Volume Rendering은 Data 처리속도 문제와 한정적인 메모리 양으로 인해 지존의 알고리즘을 그대로 적용하는 경우 실시간 가시화가 힘들 뿐만 아니라 3차원 영상의 질이 저하되는 문제가 있었다 따라서, 본 연구는 3차원 영상의 질 저하 없이 실시간으로 MR Angio의 3차원 Volume 가시화를 구현한다 본 연구해서 사용되는 속도 개선 알고리즘은 Marc Levoy가 제안한 8진Tree(Octree) 자료구조를 이용하며, 또한 Volume Data 내에 존재하는 공기와 같이 가시화될 필요가 없는 부분에 대해 불필요한 계산을 피하고 가시화하고자 하는 부분만을 계산함으로써 Rendering에 소요되는 시간을 줄이는 방법을 사용한다.

  • PDF

A study on university office worker's perception of indoor air quality (Focused on K university) (사무실 근로자들의 실내공기질 인식에 관한 기초 조사 (K대학교를 중심으로))

  • Shin, Eun-Young;Kim, Gwang-Hee
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.3
    • /
    • pp.69-76
    • /
    • 2017
  • Indoor Air Quality(IAQ) affects physical and mental state of person who is residing indoor. Also, it manages daily life condition of Indoor Air in the building. According to the study, office workers spend 23 hours and 12 minutes, about 97% of his/her day indoor. Therefore, Indoor air quality affects not only the health of the person whose staying inside for a long hours but also the productivity and efficiency of work. This study conduct investigations on employees' awareness of indoor air quality of office in university. By doing so, we are able to determine current situation and provide basic data of improvement for derived problems. As a result, most of the respondents were not satisfied with ventilation and moisture which are elements of Indoor Air Quality. These led people to struggle with symptoms of health. Therefore, to improve the indoor air quality of a university office, it is necessary to exchange the air six times an hour according to recommendation of Refrigeration and Air Conditioning Engineers (ASHRAE)in the United States. Also, plan for Ventilation system that consider temperature, humidity and air flow indoor shall be provided for high quality conformability. furthermore, It is necessary to consider the multilateral in factors of generation of revenue through health care savings of workers and improvement of productivity.

램제트 엔진에서의 화염 전파와 비정상 연소 현상에 관한 수치해석

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.10-10
    • /
    • 2000
  • 램제트 엔진은 비추력이 높고 추력 레벨은 낮으므로, 2단 추진기관에 적합한 추진 시스템이다. 1단-추진기관의 작동이 끝나고, 2단 램제트 엔진이 점화 후 안정된 연소에 도달되기까지 비행체의 속도는 항력에 의하여, 초당 약 마하수 0.1 정도씩 감소된다. 1단 연소 후 2단 램제트로 전환되는 지연시간이 길수록 1단에서 요구되는 종말 가속도는 증가되므로, 1단이 차지하게되는 부피는 증가되고 비행체의 크기 또한 늘어나게 된다. 따라서 1단에서 2단 램제트로 천이되는데 소요되는 시간을 가능한 짧게 하는 것이 효과적이다. 그러나 램제트 엔진의 특성상 선결되어야할 다음과 같은 여러 문제들이 있다. 첫째, 1단 작동 시 공기 흡입구와 연소실은 차단벽으로 분리되어 있다가, 1단 연소후 차단막이 제거되어 외부공기가 램제트 연소실로 흡입된다. 흡입되는 공기는 흡입구의 형상에 의하여 램 압축되지만 초음속으로 연소실을 통과하게된다. 연료 주입 구에서 공급되는 연료는 연소실에서 유동의 흐름방향(streamline)에 따라서 연소실로 확산되는데, 연소되기 전에는 유속이 빠르게 노즐로 빠져 나가므로 램제트 연료가 재순환 구역(recirculation zone)으로 침투하는데 쉽지가 않다. 둘째, 연소실 입구에서 발생되는 와류 (ring vortex)는 1단 연료의 고온 연소 가스를 연소실로 확산시키는데, 비 균일한 온도 분포를 유발하여 램제트 연료의 점화에너지가 공급되는 시간이 적당하지 않을 경우 균일한 화염 전파에 악영향을 준다. 셋째, 연소실에서의 빠른 유동 조건은 연료가 연소실에 머무를 수 있는 시간을 감소시키며, 연소실 입구에서 강한 전단 응력이 발생되어 화염이 안정화되는데 악 영향을 미치게된다. 본 논문은 공기 흡입구, 연소실 및 노즐을 통합하여 수치해석을 하였으며 열유동/점화/연소등의 미케니즘을 이해하고, 주요 인자들 중 와류의 영향에 초점을 맞추었다.다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14) 식도경 시행회수는 1회가 17례(54.8%), 2회가 9례(29.0%), 3회 이상이 5례(16.1%)였다.EX>$IC_{50}$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적

  • PDF

Analysis of Cold Air Flow Characteristics according to Urban Spatial Types to Construct a Wind Road - Focused on Urban Area of Changwon - (바람길 조성을 위한 도시공간유형별 찬공기 유동 특성 분석 - 창원시 도시지역을 중심으로 -)

  • LEE, Su-Ah;SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.30-47
    • /
    • 2022
  • This study analyzed the characteristics of cold air flow according to spatial types in urban areas of Changwon-si, Gyeongsangnam-do. The spatial types were classified by cluster analysis considering the land use map, building information, and topographic characteristics produced on the Changwon biotope map. The amount of cold air and wind speed were derived by KLAM_21 modeling. As a result, spatial types were classified into a total of 14 types considering the density and height of buildings, land use types, and topographic characteristics. Cold air flow was found to generate cold air in the valley of the forest area outside urban area, move through roads and open spaces, and accumulate in the low-lying national industrial complex, and then spread cold air throughout the urban areas. There was a lot of cold air flow in the tall building area, and the cold air accumulation was less in the slope and ridge areas. The results of this study were able to understand the characteristics of cold air flow according to building density, land use type, and topography, which will be usefully used as basic data for urban wind road construction to mitigate climate and improve air quality in urban areas.

A Study on the Effectiveness of Wind Corridor Construction forImproving Urban Thermal Environment: A Case study of Changwon, South Korea (도시 열환경 개선을 위한 취약지역 선정 및 바람길 조성 방안: 창원시를 대상으로)

  • Kim, Jong-Sung;Kang, Jung-Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.187-202
    • /
    • 2021
  • This study examined the effectiveness of wind corridor construction by analyzing the thermal environment, cold air generation, ventilation, and geographical characteristics to improve urban thermal environment and establish the basis for specialized strategy in Changwon-si, Gyeongsangnam-do. Using spatial analysis and remote sensing techniques, surface temperature, land cover and land use, wind field, and slope were measured and through this, a wind corridor analysis model was constructed. As a result of the analysis as of 2020, Changwon-si generally has land cover characteristics that are advantageous for the generation of cold air, but the temperature in most urban areas is the highest, and the temperature in areas such as north Changwon area, Jinbukmyeon, Ung-dong, and Ungcheon-dong are relatively high. There was a typical trend of high average wind speed in mountain regions and low average wind speed in urban areas. Accordingly, the north Changwon area, the former Changwon downtown area, the Hogye-ri and Pyeongseong-ri areas, and the Changpo Bay area are derived as vulnerable areas to thermal environment, and various measures to reduce temperature and improve air quality that the inflow of cold air into the area considering the characteristics of each area and securing wind ventilation between the surrounding mountains, reservoirs, and park areas were proposed.

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

Analysis of Electrode Polarization in MCFC by a Reference Electrode (기준 전극을 이용한 용융탄산염 연료전지의 분극 특성 해석)

  • Han Jonghee;Lee Kab Soo;Chung Chang-Yeol;Yoon Sung-Pil;Nam Suk-Woo;Lim Tae-Hoon;Hong Seong-Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.125-131
    • /
    • 2001
  • A long-term variation of electrode polarization in the MCFC has been analyzed successfully using a single cell with a Au, $CO_2/O_2$ reference electrode Four different cells with different components were operated and their electrode polarizations were analyzed. As published in the literatures, the cathode polarization was larger than that of the anode. The more stable operation of a single cell with the Al-coated cell frame up to 6,000hrs indicates that the corrosion at the cell frame, particularly wet seal area, plays an important role to determine the lifetime of a MCFC. At the initial stage of the cell operation, the voltage of the cell using a cathode stabilized by the $LiCoO_2$ coating was relatively low due to the high cathode polarization. As the cell was operated and the stabilized cathode was lithiated sufficiently, the cathode polarization decreased and the cell voltage was recovered. It was observed that the voltage of the cell using the $Li_2CO_3/Na_2CO_3$ electrolyte fluctuated with operation time and the cathode polarization fluctuated along with the cell voltage quite similarly. Although the mechanisms of the voltage fluctuation were not clear yet, the results imply that the voltage fluctuation was related with a reaction in the cathode side. After testing every single cell, the cathode polarization increased with the steep decrease in the cell voltage. Thus, the cathode should be improved in order to develop more durable MCFC.

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • Composite cathodes of $50/50\;vol\%$ LSM-YSZ $(La_{-x}Sr_xMnO_3-yttria\;stabilized\;zirconia)$ were deposited onto dense YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and studied by ac-impedance spectroscopy (IS). The conditioning effects on LSM-YSZ cathodes were seen and remedies for these effects were noted in order to improve the performance of a solid oxide fuel cell (SOFC). The effects of temperature on impedance, surface contamination on cathode bonding to YSZ electrolyte, changing Pt paste, aerosol spray technique applied to curved surface on microstructure and cell to cell variability were solved by testing at $900^{\circ}C$, sanding the YSZ surface, using only one batch of Pt paste, using flat YSZ plates and using consistent procedures and techniques, respectively. And then, reproducible impedance spectra were confirmed by using the improved cell and the typical spectra measured for an (air)LSM-YSZ/YSZ/LSM-YSZ(air) cell at $900^{\circ}C$ were composed of two depressed arcs. Impedance characteristics of the LSM-YSZ cathodes were also affected by experimental conditions such as catalytic interlayer, composite cathode compositions and applied current.