• Title/Summary/Keyword: 공기주입형 분리막

Search Result 3, Processing Time 0.016 seconds

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.

Permeation Characteristics of the Tubular Membrane with Continuous Air Cleaning System (연속식 공기세정 관형막 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.185-188
    • /
    • 2013
  • This study was carried out for microfiltration tubular membrane module equipped with self-designed air injection nozzle in order to determine the permeate flux due to the effect of membrane fouling reduction. The 0.1 wt% yeast particle solution was used as a feed solution and permeation tests were performed for the cases with and without air injection. Permeation fluxes were measured and analyzed to examine the effect of membrane fouling reduction. While the permeation flux without air injection decreased continuously, that with air injection was improved more than 30 percent than that of no air injection case.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.