• Title/Summary/Keyword: 공기저항저감

Search Result 52, Processing Time 0.035 seconds

Study on the Aerodynamic Advancements of the Nose and Pantograph of a High-Speed Train (고속열차 전두부 및 팬터그래프 공력성능 향상기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.416-421
    • /
    • 2008
  • Recent high-speed trains around the world have achieved remarkable improvement in speed. In Korea, the new high-speed train with maximum speed of 400km/h has been developing through the 'Future High-Speed Rail System Project'. The improvement in train speed brings numerous aerodynamic problems such as strong aerodynamic resistance, noise, drastic pressure variation due to the crosswind or passing by, micro-pressure wave at tunnel exit, and so on. Especially, the nose shape of high-speed train is closely related to the most of the aerodynamic problems. Also the pantograph has to be considered for noise prevention and detachment problems. In this paper, the project, 'Research on the Aerodynamic Technology Advancement of the High-Speed EMU' is introduced briefly, which is one of the efforts for the speed improvement of the 'HEMU400x'. Finally, two main results of train nose and pantograph will be shown. First, the optimization of the cross-sectional area distribution of the high-speed train nose to reduce tunnel micro-pressure wave, and second, robust design optimization of the panhead shape of a pantograph.

  • PDF

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.

Autogenous Shrinkage Mock-up Test of High Performance Concrete by Emulsified Refined Cooking Oil (유화처리 정제식용유를 사용한 고성능 콘크리트의 자기수축 Mock-up 실험)

  • Jo, Man-Ki;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The aim of this research is analyzing the fundamental properties and autogenous shrinkage reducing performance of 70 and 100MPa grade high performance concrete including emusified refined cooking oil(ERCO) under the mock-up conditions. As a results of experiment, the mixture contained 0.5% of ERCO showed slightly decreased slump flow while the slump was increased and segregation resistance performance was improved as 2.5 of EIS. For air content, all mixtures satisfied target air content with increased unit weight and delayed setting time with ERCO addition. In the case of compressive strength, when ERCO was added 0.5%, the result of approximately 5 to 10% of increased compressive strength was observed. For the autogenous shrinkage, ERCO contributed on 20-30% of shrinkage reducing performance comparing to Plain mixture without ERCO. It is considered that capillary pore filling action of soap particles occurred by the reaction of ERCO in cement paste between fatty aicd and calcium hydroxide contributed the shrinkage reducing performance. Based on these mock-up test results, application of the high performance concrete mixture with ERCO on CFT actual structure was decided.

Evaluation of the Temperature Drop Effect and the Rutting Resistance of Moisture Retaining-Porous Asphalt Pavement Using Accelerated Pavement Testing (포장가속시험을 이용한 보수형 배수성 포장의 온도저감 효과 및 소성변형 저항특성 연구)

  • Kwak, Byoung-Seok;Suh, Young-Chan;Song, Chul-Young;Kim, Ju-Won
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2009
  • One of the main causes of asphalt rutting is high temperature of the pavement. Nevertheless, there has been few research on lowering the pavement temperature for reducing rutting. This study investigated the performance characteristics of moisture-retaining porous asphalt pavement, which is known to have a temperature reducing effect. The purpose of this study is to quantify the temperature reducing effect of moisture-retaining porous asphalt pavement and its effect of reducing rutting through Accelerated Pavement Testing(APT). Additionally, the possibility of reducing the thickness of the pavement in comparison to general dense grade pavement by analyzing structural layer coefficient of moisture retaining pavement. A total of three test sections consisting of two moisture-retaining porous asphalt pavement sections and one general dense-grade porous asphalt pavement section were constructed for this study. Heating and spraying of water were carried out in a regular cycle. The loading condition was 8.2 ton of wheel load, the tire pressure of $7.03kgf/cm^2$, and the contact area of $610cm^2$. The result of this experiment revealed that the temperature reducing effect of the pavement was about $6.6{\sim}7.9^{\circ}C$(average of $7.4^{\circ}C$) for the middle layer and $7.9{\sim}9.8^{\circ}C$(average of $8.8^{\circ}C$) for surface course, resulting in a rutting reduction of 26% at the pavement surface. Additionally, the structural layer coefficient of moisture retaining pavement measured from a laboratory test was 0.173, about 1.2 times that of general dense grade pavement. The general dense-grade porous asphalt pavement test section exhibited rutting at all layers of surface course, middle layer, and base layer, while the test sections of moisture-retaining porous asphalt pavement manifested rutting mostly at surface course only.

  • PDF

The PC concrete Rainwater Storage Facility development for a prevention of disaster and a water resources re-application (방재 및 수자원 재활용을 위한 PC콘크리트 빗물저류조의 개발)

  • Chang, Young-Cheol;Cho, Cheong-Hwi;Kim, Ok-Soo;Oh, Se-Eun;Lee, Jun-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.879-883
    • /
    • 2005
  • 우리나라는 하천유역의 도시화 추세 속에 불투수층의 증가로 빗물의 일시 유출로 인한 홍수발생으로 많은 인명과 재산피해가 발생하고 있어 방재적 차원에서의 수자원관리가 시급한 실정이다. 또한, 초기 빗물과 합류식 하수도의 월류수에 의한 하천, 호소, 및 습지의 수질오염문제도 많이 발생하고 있다. 이러한 문제를 해결하기 위하여 콘크리트로 제작된 PC 지하식 빗물저류시설로서 상부의 공간은 공원, 운동장, 주차장 등 다양하게 이용하면서 방재와 치수를 가능케 할 수 있다. 또한, PC 콘크리트 빗물저류조는 현장 타설이 아닌 PC콘크리트 블록을 현장에서 조립하여 시공기간이 대폭적으로 단축되고, 작업환경 및 주변환경을 개선시킬 수 있다. 또한, 지하수의 보전, 회복을 위한 빗물저류 침투 시설 역할도 수행하여 비상용수를 확보하고 여름철 홍수 시 빗물을 가두어 재해를 방지하는 등의 다목적 시설로 활용된다. 지하 매립형 빗물저류조는 기존의 암거설계기준을 참조하여 일본의 내진설계 기준을 반영하였으며, 고강도 콘크리트를 사용하여 강도 또한 뛰어나다. 그리고 시공이 간편하고 공기의 단축에 탁월한 효과를 나타내며, 빗물저류조 설치는 다음과 같은 특징이 있다. 1. 지하저류형 빗물저류조 시설로 설계되어 토지의 효과적인 이용이 기대된다. 2. 공사기간이 짧아 경제적이다. 3. 안정된 구조체이다. 4. 부지의 형태에 맞춘 시공이 가능하다. 5. 소규모에서 대규모의 유수지까지 광범위하게 대응이 가능하다. 6. 방재역할 수행 및 빗물이용의 역할을 담당할 수 있다. 7. 불투수층이 증가하고 있는 도시지역에서 적극 활용가능하다.로 판단된다.한 예비방류의 시행과 강우종료 후에도 이수용량에는 손실이 없는 저수지의 관리방안의 지침이 되는데 효율적이라 판단되었다. 방법을 개발하여 개선시킬 필요성이 있다.>$4.3\%$로 가장 근접한 결과를 나타내었으며, 총 유출량에서도 각각 $7.8\%,\;13.2\%$의 오차율을 가지는 것으로 분석되어 타 모형에 비해 실유량과의 차가 가장 적은 것으로 모의되었다. 향후 도시유출을 모의하는 데 가장 근사한 유출량을 산정할 수 있는 근거가 될 것이며, 도시재해 저감대책을 수립하는데 기여할 수 있을 것이라 판단된다.로 판단되는 대안들을 제시하는 예비타당성(Prefeasibility) 계획을 수립하였다. 이렇게 제시된 계획은 향후 과학적인 분석(세부평가방법)을 통해 대안을 평가하고 구체적인 타당성(feasibility) 계획을 수립하는데 토대가 될 것이다.{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며

  • PDF

A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine (국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구)

  • Lee, Changwoo;Nguyen, Van Duc;Kubuya, Kiro Rocky;Kim, Chang O
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.609-619
    • /
    • 2018
  • This study was carried out at a local limestone mine to analyze the ventilation efficiency of the shaft equipped with a main fan. The results show that its ventilation efficiency is clearly verified for the natural as well as the mechanical ventilation. The airflow rate of $11.7m^3/s$ was induced by the natural ventilation force and the maximum quantity is almost same as the airflow rate estimated by monitoring the average temperatures in the upcast and downcast air columns. Meanwhile, the airflow rate exhausted by the main fan through the shaft was $20.3{\sim}24.8m^3/s$; variation of the quantity was caused by the upward shift of the mine ventilation characteristic curve due to the frequent movement of the equipment. This indicates efforts are required to reduce the ventilation resistance and raise the quantity supplied by the main fan. The turbulent diffusion coefficients along the 1912 m long airway from the portal to the shaft bottom was estimated to be $15m^2/s$ and $18m^2/s$. Since these higher coefficients imply that contaminants will be dispersed at a faster velocity than the airflow, prompt exhaust method should be planned for the effective air quality control. The ventilation shaft and main fan are definitely what local limestone mines inevitably need for better working environment and sustainable development.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.