• Title/Summary/Keyword: 공기와 공사비

Search Result 231, Processing Time 0.025 seconds

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.

Benefit·Cost Analysis of Combine Method Using Hollow Precast Concrete Column (중공 PC기둥 복합공법의 편익-비용 분석)

  • Kim, Jae-Yeob;Park, Byeong-Hun;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Because of the shortage of construction workers due to The rising labor costs and an aging labor force, construction time has been extended. As a solution, The construction time of high-rise buildings can be reduced by adopting precast concrete construction methods. Most relevant studies have focused on the development and structural analysis of such methods and not on their construction management. Therefore, this study focused on the construction management of the hollow precast concrete column (HPC) method. The objective of this study was to evaluate the performance of HPC formulations through the analytic hierarchy process and benefit-cost analysis. After a gap analysis of the available literature and expert interviews, the evaluation criteria were selected. A questionnaire survey was administered to professionals with ample experience in precast concrete construction for the pair-wise evaluation of the benefit and costs of the HPC method. The results show that the benefits of the HPC method outweighed its costs. Therefore, the HPC method is a suitable substitute for the half-slab method.

Market effects analysis of when lowering the threshold value of construction services under WTO GPA (WTO 정부조달협정 건설서비스 양허하한선 인하시의 건설시장 변화와 대응방안)

  • Moon, Hyuk;Kim, Myeong-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.3
    • /
    • pp.72-82
    • /
    • 2009
  • Lowering threshold value of construction services is extremely sensitive issue to the small and medium enterprises in construction industry. Because it means opening the construction markets where the small and medium construction companies compete intensely. Nevertheless, it is absent that the analysis on the effect of opening the market lowering threshold value of construction services under Government Procurement Agreements or Free Trade Agreement. This research is to analyze the effects of lowering threshold value of construction service which have been agenda repeatedly in the international agreements such as WTO and FTA. The current threshold value of construction services of Korea under WTO GPA are 5million SDR where the government delivers and 15million SDR where the local government or the public institution deliver. However major parties to an entente such as USA and EU have been demanding to lower threshold value of 15 million SDR where the local government or the public institution deliver to 5million SDR. The analysis figure the effect of this lowering threshold value to be a market reduction by 2trillion Won as '07 fiscal year basis. This market shrinkage will effect to the small and medium construction companies in local considerably.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

The Rheology of Cement Paste Using Polycarboxylate-Based Superplasticizer for Normal Strength-High Fluidity Concrete (보통강도 고유동 콘크리트용 PC계 고성능 감수제를 사용한 시멘트 페이스트의 레올로지 특성 평가)

  • Kong, Tae-Woong;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.276-286
    • /
    • 2021
  • General high fluidity concrete is the area of high strength concrete with a high amount of cement to secure the required fluidity and workability. Since most of the concrete structures currently used have normal strength, there is a limit to the practical expansion and practicality of use. Thus it is necessary to develop normal strength-high fluidity concrete with low binders that can be used not only in general buildings but also in special buildings, and can greatly reduce construction time and save labor costs. This requires to develop and apply the polycarboxylate-based superplasticizer. In this study, PCE was prepared for each combination of starting materials(WR, HB, RT) and the rheological properties of cement paste were analyzed using ringflow cone and a rotary viscometer. As a result, when PCE with a combination of WR 80%, HB 6.5%, and RT 13.5% was applied, the yield stress can be minimized while securing the plastic viscosity at level of the normal strength. In addition, high fluidity due to the high dispersion effect was confirmed.

A Study Of the Construction Management Applied to BAT Korea Factory Construction Project in Korea (BAT Korea Factory 건설 프로젝트의 CM 적용사례 연구 - Cost Management 사례를 중심으로 -)

  • Kim Duk-Kon;Kwon O-Kyung;Kim Jong-Hoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.48-57
    • /
    • 2003
  • BAT Korea's Factory is the one of the major projects that clearly confirms and demonstrates that Construction Management (CM), provided by a Korean CM Company to the foreign clients, enables them to successfully complete projects; with savings in time and reduction in cost, which it is $15\%$ lower than the cost of the overseas construction. Also, throughout the thorough schedule management, it was possible to commence with manufacturing one month after the completion date. The Key Success Factors was generated by the excellent construction management skills, and more importantly by the confidence gained by the client in giving a CM company full authority for the construction management of the project. This study has focus on elements of construction management applied to this project throughout the concept of 'One Stop Shop', including cost managements, contract management and value engineering etc. We hope that this study will provide useful data to enable public clients to take advantages of construction management, in a similar way to. the private clients, who have already implemented CM actively.

  • PDF

Development of an Automated Gangform Climbing System for Apartment Housing Construction - Structural Stability and Tower Crane Lifting Load Analysis - (공동주택 전용 갱폼 인양 자동화 기술의 개발 - 구조적 안정성 및 타워크레인 양중부하 분석 -)

  • Lee, Jeong-Ho;Yang, Sang-Hoon;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.48-59
    • /
    • 2012
  • Gangform, compared to the traditional forms, is a systemized form which can reduce construction duration and cost by the advantage of using it repeatedly. However, transportation and climbing process of the Gangform is highly dependant on the performance of tower crane. Gangform climbing process takes one day out of six to seven days of a structural work cycle. Tower cranes can not be used in other lifting works when they lift the Gangform during the structural work cycle, causing the delay in the construction project. Numerous efforts and researches have been done in domestic and international industry to solve such limitations of Gangform climbing process. Especially, "A Study on the Development of Automatic Gangform Climbing System for Apartment Housing Construction"has suggested a conceptual model which can climb the Gangform system without a tower crane. In this paper, the technical and economical feasibilities of previously proposed Automatic Gangform climbing system are examined by evaluating its structural stability and lifting load reduction effect.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Study on the Application of Multi-skilled labors to Factory Production Process for Securing Economic Feasibility of Modular Unit (모듈러 경제성 확보를 위한 공장생산 프로세스의 다기능공 적용 방안)

  • Kim, Hakcheol;Hwang, Youngkyu;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • The Construction industry is a labor-intensive industry that its labor cost takes up about 30~40% out of the whole construction cost. However, due to a stereotype that on-site work is a 3D job there is a shortage of the labor forces. Modular construction method is to produce modular units in the plant so that workers could work stably. Also, after delivering the module from plant to the site, there will be only installment to be required that shortens construction duration. Even though the modular market is currently expanding based on military facilities in Korea, its best strengths are not demonstrated well which are shortened construction period and low cost. It also causes labor problem of production due to minimum utilization of the modular construction method. Multi-skilled labor means a technician that is able to perform more than two kinds of work with more than two techniques. Multi-skilled labor can proceed smoothly by figuring out the connectivity between the precedent and following operations. Therefore, this research is to apply the concept of Multi-skilled labors, suggest solutions and allocate manpowers efficiently. As a result, it helps to decrease idle manpowers during the operation and the total labor forces can be saved. Low cost is the original strength of the modular which can stand out so the modular market is expected to expand.

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.