• Title/Summary/Keyword: 공기압력모델

Search Result 166, Processing Time 0.025 seconds

Convergence Study on Flow due to the Configuration of Bobsleigh (봅슬레이의 형상에 따른 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.159-164
    • /
    • 2019
  • The front bumper of bobsleigh is mounted to alleviate the impact, but the air resistance to the bobsleigh depends on the body shape positioned in front. This study was conducted the flow analyses about three kinds of bobsleigh configurations. Models B and C with the sharp type of the front can reduce the air resistance than model A with the round type of the front. And the type that the back of the bumper narrows can generate a flow smoother than the one widening. It is thought that the results of this study can be devoted at ensuring the body design to reduce the flow resistance most at bobsleigh. As the design data with the durability of bobsleigh obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients (폐쇄성 수면무호흡 환자의 상기도 형태의 특징과 압력강하에 관한 3차원 전산유체역학해석)

  • Mo, Sung-Seo;Ahn, Hyung-Taek;Lee, Jeong-Seon;Chung, Yoo-Sam;Moon, Yoon-Shik;Pae, Eung-Kwon;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.66-76
    • /
    • 2010
  • Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics. Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril. Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure. Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.

Study on Dynamic Instability of Plane Membrane Structures under Wind Action (풍하중을 받는 평면 막구조물의 동적불안정 판정에 관한 연구)

  • Han, Sung-Eul;Hou, Xiao-Wu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • In this paper, dynamic instability of plane membrane structures under wind action has been studied. The key to solving the governing equations of membrane structures under wind action is how to obtain the air pressure on membrane. Based on Bernoulli's theorem, fluid pressure has a certain relationship with velocity potential. Velocity potential could be solved according to thin aerofoil theory, where air around the membrane is regarded as a sheet of vortices. In this paper, we take advantage of the most commonly used three-node triangular membrane element and weighted residual-Galerkin method to obtain the determining equation for stability evaluation. Square and rectangular membrane structures are studied. The influence of initial prestressing force and wind direction towards critical wind velocity are also analyzed in this paper.

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

A Flow Analysis on Wing Shape of Cooling Fan at Automobile (자동차에서의 냉각팬의 날개 형상에 대한 유동해석)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • In this study, a flow analysis is carried out on the wing shape of cooling fan at automobile. By designing three kinds of Canival, Teracan and basic models with CATIA program, this analysis is done on the configuration of cooling fan with the same flow condition. It can be seen that the contour of flow velocity is changed due to the model of wing and the pressure distribution of fluid is changed due to the configuration or the area of wing. In case of cooling model of Teracan among three models, there is the most air flow and it can be thought to be most effective to cool the radiator. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

A Numerical Prediction for the Thermo-fluid Dynamic and Missile-motion Performance of Gas-Steam Launch System (수치모사를 통한 가스-스팀 발사체계의 열유동과 탄의 운동성능 예측)

  • Kim, Hyun Muk;Bae, Seong Hun;Bae, Dae Seok;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.591-595
    • /
    • 2017
  • Numerical simulations were carried out to analyze thermo-fluid dynamic and missile-motion performance by using two-phase flow model and dynamic grid system. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

  • PDF

피동형격납용기 분석모델 개발 및 민감도 분석

  • Jeong, Beop-Dong;Kim, Seong-Oh;Hwang, Young-Dong;Jang, Mun-Hui;Jeong, Ik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.422-429
    • /
    • 1997
  • 피동형 격납용기 냉각계통 해석을 위하여 격납용기 압력, 온도 과도현상 분석 코드인 CONTEMPT4/MOD5 전산코드에 피동형 격납용기 열전달 모델을 추가하였다. 외부공기의 순환에 의한 철제 격납용기와 차폐건물 사이의 환형 공간의 냉각모델은 자연대류 및 혼합 대류의 기존 실험적 상관식을 사용하였고 상부에서 분사된 물의 증발에 의한 열전달 현상은 analogy 개념을 적용한 질량전달 모델을 도입하였다. 개선된 전산코드로 1000Mwe급 원전의 피동형 격납용기에 대하여 각 실험적 상관식의 차이, 물막의 형성비율, 습식냉각 지연시간 등의 민감도 분석을 수행하였다.

  • PDF

A Theoretical Study on the Initial Collection Efficiency and Particle Deposition Morphology in Model Fiber Filter (모델 섬유 필터(Model Fiber Filter)에서의 입자의 퇴적 양상 및 초기 집진 효율에 대한 관한 이론적 연구)

  • 유도영;전기준;정용원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.427-428
    • /
    • 2000
  • 공기 여과 장비에 주로 쓰이는 섬유층 여과기(fibrous filter)는 다양한 장비에 널리 쓰이고 있다. 섬유층 여과기는 이를 구성하는 섬유(fiber)의 직경, 표면 조도, 그리고 이들로 해서 나타나는 공극률, 하전여부, 등 여러 가지 필터의 특성에 따라 다양한 포집양상(Deposition Morphology)을 보인다. 제조 공정에 따라 달라지는 특성을 가진 필터는 여과 과정을 거치면서 입자가 퇴적되고 압력강하가 증가하여 필터의 수명이 다하게 된다. (중략)

  • PDF

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.