• Title/Summary/Keyword: 공기력

Search Result 590, Processing Time 0.029 seconds

Flutter Suppression of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개의 플러터 억제)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.448-457
    • /
    • 2013
  • This paper presents the design of an active flutter suppression system for flexible wing using sliding mode control method. The aerodynamic force generated by the motion of a flexible wing control surface is utilized as control force. For this purpose, aeroservoelastic model is formulated by blending aeroelastic model, control surface actuator model, and gust model. A sliding mode controller is designed for active flutter suppression on the aeroservoelastic model in conjunction with Kalman filter that estimates the system states based on the measured output. The performance of the designed controller is demonstrated via numerical simulation for the representative flexible wing model.

Interface characteristics of Cu/TiN system by XPS (XPS를 이용한 Cu/TiN의 계면에 관한 연구)

  • 이연승;임관용;정용덕;최범식;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 1997
  • A chemical reaction and electronic structure change at the interface between copper and titanium nitride were investigated by XPS. A thin Cu layer was deposited on a TiN substrate oxidized by exposure to air at room temperature. We observed the Ti(2p), O(1s), N(1s), Cu(2p) core-level, and Cu LMM Auger line spectra. With increasing of the thickness of Cu layer, these spectra do not show any changes in the line shape as well as in peak position. In addition, the valence band spectra in XPS do not show any changes, which indicates that Cu does not react with Ti, N, and O. This inreactivity of Cu might cause a poor adhesion between Cu and TiN.

  • PDF

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

CFD Analysis for Concept Design of Air Levitation Transport System (공기부양 이송시스템 개념설계를 위한 전산유동해석)

  • Chang H.S.;Park Y.J.;Chang Y.S.;Choi J.B.;Kim Y.J.;Chun P.H.;Kong J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-82
    • /
    • 2006
  • Conveyor-type transporters have been widely used as a typical delivery system of semi-conductor, FPD and other IT-related products. However, as the IT-product is getting larger in size and higher in resolution, several problems are caused by mechanical contacts between the transporter and target object. In this context, recently, lots of efforts are being devoted for development of various contact-free handling systems to get rid of deffets and oil contaminations. The objectives of this paper are to characterize suspension mechanisms and to investigate air flow effects on air levitation transport system. For this purpose, a series of CFD analyses were carried out and the simulation data showed a good agreement with the corresponding experimental ones. It is anticipated that the promising result can be used as a basis for concept design of the transport system.

  • PDF

A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor (정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2002
  • The performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3$/min at 290mmAq static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to three times of stator axial chord length, and performance curves are obtained with 9 different axial gaps. The efficiency varies about 8% of its peak value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.6-1.9Cx.

On the Hydrodynamic Forces acting on a Partially Submerged Bag (부분적으로 물에 잠긴 백에 작용하는 유체역학적 힘)

  • G.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 1992
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially into water and the end points of it oscillate. SES(Surface Effect Ship)has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. In this paper, the formulation of this problem was done and linearized. The calculation scheme for the radiation problem of an oscillating bag is shown in comparison with the case that the bag is treated as rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

Development Test of Alcohol Burner for Turbopump Real-propellant Test Facility (터보펌프 실매질 시험설비를 위한 알코올버너 개발시험)

  • Kim, Jin-Sun;Han, Yeoung-Min;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.79-86
    • /
    • 2014
  • A turbopump real-propellant test facility(TPTF) is to verify the performance of a turbopump unit(TPU) based on liquid oxygen and kerosene. One of the most important sub-facilities is a hot-gas generation system which makes the driving force of the TPU with an alcohol burner. The alcohol burner generates the required flow rates and temperature at the facility using high pressure air and ethanol. In the study, the verification tests of the alcohol burner which was manufactured entirely with domestic technology were performed and fabrication technique and operation skill for the burner could be obtained ahead of the construction of the facility. Two burners will be operated simultaneously for the real-propellant test of 75tf class turbopump and satisfy the power requirement from the turbine of the TPU.

Enhanced Removal of Benzene-NAPL in Soil using Concurrent Injection of Cosolvent and Air (Cosolvent와 공기 동시 주입 공정에 의한 토양 내 벤젠-NAPL 세정 증대 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1095-1101
    • /
    • 2008
  • Nonaqueous phase liquids (NAPL) are the continuous source for soil and groundwater contamination. The first objective of the study was to verify the effect of co-injection of cosolvent and air on NAPL removal from soil-column system. The second objective of the study was to investigate the effect of alcohol-partitioning property on the NAPL removal by the co-injection process of cosolvent and air. Enhanced removal of benzene-NAPL by the co-injection process of ethanol and air was also verified within the soilcolumn system. However, the co-injection process of Tert-butanol (TBA) and air showed no enhancement of benzene-NAPL removal. This study found that the viscous pressure of TBA was so higher than the capillary pressure and TBA easily displaced the benzene-NAPL and air present in soil pores. Air of the coinjection process did not work for NAPL removal but hindered NAPL mobilization. NAPL partitioning property and viscous pressure of cosovlent should be considered for application of the co-injection process of cosolvent and air.

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

An experimental study on increased pressure in Shinwol rainwater storage and drainage system by undular bore (불규칙 단파에 의한 신월 빗물저류배수시설 내 압력상승에 관한 실험 연구)

  • Oh, Jun Oh;Park, Jae Hyeon;Jun, Sang Mi
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • An underground deep tunnel system is a facility in form of a reverse siphon for an under flood defense structure. In this study, the 'Shinwol rainwater storage and drainage system', which is under construction for the first time in South Korea, in order to confirm the effects of undular bore and pressurized air on the hydraulic stability of the facility in various flood scenarios a hydraulic model experiment was performed. As a result of this study, it was analyzed that the undular bore generated downstream pushed the pressurized air collected in the facility while moving upstream, and the pressure inside the pipe increased at this time. It was analyzed that the pressure during the passage of the undular bore was greater than the sum of the static pressure and dynamic pressure at the time and overflow occurred when the cross-sectional size of the pressurized air was more than 40% of the cross sectional area of the tunnel. It is determined that this is correlated with the volume of pressurized air collected in the facility, and it is determined that it is necessary to study the relationship between velocity of undular bore and the volume of pressurized air in the future.