• Title/Summary/Keyword: 공극 길이

Search Result 117, Processing Time 0.028 seconds

Degradation Assessment of Forest Trails in Gyeongnam Domain of Mt. Jiri (지리산 숲길 경남권역 구간의 훼손 실태 평가)

  • Park, Jae-Hyeon;Huh, Keun-Young;Lim, Hong-geun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.476-482
    • /
    • 2011
  • As part of studies on the reduction of forest trails degradation caused by high users density, this study was carried out to investigate soil physical properties of forest trails of Gyeongnam Domain in Mt. Jiri, Southeast Korea. Since the forest were opened for leisure trailing in 2008, the average soil erosion amounts per a square meter on the forest trails were $0.0015m^3$ from Inweol to Gumgeo, $0.0018m^3$ from Dongang to Suchol, and $0.0027m^3$ from Suchol to Chungam for 3 years. But, from Chungam to Agyang, the erosion was almost not occurred because it was recently opened. The soil hardness in 5 cm depth was significantly higher than in 10 cm depth. It indicates that intensive soil compaction by users has mainly affected in 5 cm soil depth until now on. In three forest trails compacted intensively, the porosity of 0-7.5 cm soil layer was down to 1.4-1.5 times compared to that in 2008. In additions, the bulk density was up to 1.6-3.1 times compared to the controls, which were not opened to users. As a result, the degradation caused by high users density would keep occurring on the three forest trails unless any counterplans are considered for the degradation reduction. At the moment, users distribution to other forest trails and long-term sabbatical years would be the most effective counterplans to keep from users gravitation on the three forest trails.

A Study on the Particle Size of Sand to Prevent Penetration of Subterranean Termite (Reticulitermes speratus kyushuensis) in Wooden Buildings (국내 지중흰개미의 목조건축물 유입 차단을 위한 모래의 적정 입도 연구)

  • Kim, Si Hyun;Kim, Tae Heon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • Termites cause massive damage to wooden architectural heritage structures. Chemical treatments have been commonly used to control them. In foreign countries, physical barriers made of sheet and particles impenetrable to termite are being used as an alternative to the chemical method. To study the efficacy of physical barriers, we investigated the appropriate sand particle size that can prevent the penetration of R. speratus kyushuensis. Upon evaluating the barrier properties of sand with particle sizes ranging from 0.85 to 4.00 mm, the penetration of termites was found to be effectively blocked at a particle size range of 1.00 to 2.80 mm. At smaller particle sizes, termites managed to move the sand particles and build an almost linear mud tube to penetrate the sand layer. At larger particle sizes, the termites could penetrate the sand layer by passing through the sand gaps.

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

Desirable Particle Size Distribution of Perlite for Tomato Bag Culture (토마토 자루재배 충진용 펄라이트의 적정 입도분포)

  • Sim Sang-Youn;Lee Su-Yeon;Lee Sang-Woo;Seo Myeong-Whoon;Lim Jae-Wook;Kim Soon-Jae;Kim Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • The physical properties of seven perlites different in particle size distribution were investigated to develop perlite bag culture in Korea. Particle sizes of 1.0-2.8mm and larger than 2.8 mm were rather evenly distributed in S-1 (1.2-5 mm), S-2 (0.15-5 mm) and S-5 (parat No.1). Larger particles were less in S-3 (1-3 mm), S-4 (Parat No.2), S-6 (OTAVI) and S-7 (Agroperl B-3). S-4, S-6 and S-7 contained lots of particles less than 1 mm in size. Total porosity was similar among substrates with the value of $59{\sim}62%$. Container capacity was between 35-40% regardless of substrates except in S-2 with 27.7%. Water content, which was about 60% at 0 kPa, was decreased sharply at 4.90 kPa regardless of substrates, which meant the easily available water was plenty in any kind of perlite tested. Substrates, S-1, S-2 and S-3 with different particle size distribution, were investigated to evaluate for perlite bag culture. Six tomatoes (Licopersicon esculentum Mill. cv. Rokkusanmaru) were planted in a perlite bag of 40 liters with the dimension of 120cm in length and 34cm in width. The amount of nutrient solution supplied and its drainage dependent on daily integrated radiation didn't show any regular trend during the growth. Roots in the bag were distributed evenly in S-1 and S-2 than in S-3. Plant grown in S-1 showed the highest total and marketable yield of 8,628 and 7,759 kg/10a, respectively. The number of small size fruits and malformed fruits were more in S-3. Consequently, S-1 with the particle size distribution of 1.2-5 mm is suggested as desirable substrate for perlite bag culture.

Effect of Continuous Cultivation Years on Soil Properties, Weed Occurrence, and Rice Yield in No-tillage Machine Transplanting and Direct Dry-seeding Culture of Rice (벼 무경운 기계이앙 및 건답직파 연속재배년수가 토양특성, 잡초발생 및 벼 생육에 미치는 영향)

  • Park, Hong-Kyu;Kim, Sang-Su;Choi, Won-Yong;Lee, Ki-Sang;Lee, Jae-Kil
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • This experiment was conducted to figure out the change of soil physical properties, rice growth and yield with the years of continuous cultivation in direct dry-seeding and no-tillage machine transplanting. Experiments were conducted at NHAES(National Honam Agricultural Experiment Station, RDA, Iksan, Cheon Buk Province, South Korea) with a rice variety "Dongjinbyeo" from 1995 to 2000. In no-tillage machine transplanting cultivation, organic matter in soil was higher than that on direct dry-seeding and was significantly high in topsoil. Problematic weed species were E. crus-galli B., A. keisak H., and L. japonica M. Plant height and tiller number m-2 were higher in common-tillage during the total growth duration. The highest weedy rice occurrence of 27.5% was observed in live years' continuous direct dry-seeding and followed by 6.2%, in four years', and 3.7%, in three years'. The highest yield reduction of 38% was observed in five years' continuous direct dry-seeding. The reduction may resulted from the competition between weedy rice and cultivated rice.

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF