AI (Artificial Intelligence)기술이 상용화되면서 최근 기업들은 AI 모델의 기능을 서비스화하여 제공하고 있다. 하지만 최근 이러한 서비스를 이용하여 기업이 자본을 투자해 학습시킨 AI 모델을 탈취하는 공격이 등장하여 위협이 되고 있다. 본 논문은 최근 연구되고 있는 이러한 모델 탈취 공격들에 대해 공격자의 정보를 기준으로 분류하여 서술한다. 또한 본 논문에서는 모델 탈취 공격에 대응하기 위해 다양한 관점에서 시도되는 방어 기법들에 대해 서술한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.302-304
/
2003
최근 인터넷을 통하여 급속히 확산되고 있는 분산 서비스 거부 공격은 전 세계 웹 사이트들에 큰 피해를 입히면서 세계적인 문제로 부상되었다. 현재 이에 대한 대책으로 방화벽이나 침입 탐지 시스템을 이용하지만. 전 세계에서 동시 다발적으로 일어나는 이 공격을 근본적으로 방지하는 데는 적합지 않다. 이에 본 논문에서는 공격 트래픽의 송신자 주소를 임의의 IP 주소를 사용하여 공격의 발원지를 추적할 수 없는 기존 문제점을 해결할 수 있는 분산 서비스 거부 공격 발원지 자동 추적 모델을 제시하고자 한다.
Proceedings of the Korea Society for Simulation Conference
/
2002.11a
/
pp.29-37
/
2002
본 논문은 가상 공격 시뮬레이션을 위한 공격자 및 리눅스 기반 호스트에 대한 모델링 방법의 제안을 주목적으로 한다. 최근, Amoroso는 보안 메커니즘 중심의 침입 모델을 제안하였으나, 시뮬레이션 접근이 분명치 않은 단점이 있다. 또한, Cohen은 원인-결과 모델을 이용하여 사이버 공격과 방어를 표현한 바 있으나, 개념적 단계의 추상화 모델링으로 인해 실제 적용이 어려운 실정이다. 이를 해결하고자 하는 시도로 항공대 지능시스템 연구실에서 SES/MB 프레임워크를 이용한 네트워크 보안 모델링 및 시뮬레이션 방법을 제안한 바 있으나, 공격에 따른 호스트의 복잡한 변화를 표현하기에는 부족하다. 이러한 문제점들을 해결하고자, 본 논문에서는 시스템의 구조를 표현하는 기존 SES에 합성용 규칙기반 전문가 시스템 방법론을 통합한 Rule-Based SES를 적용하여 공격자를 모델링하고, DEVS를 기반으로 하는 네트워크 구성원을 모델링한다. 제안된 모델링 방법의 타당성을 검증하기 위해 본 논문에서는 샘플 네트워크에 대한 사례연구를 수행한다.
본 논문에서는 DDoS 공격 패킷을 사전에 탐지하고 트래픽 제어를 하기위한 방안을 제안한다. 제안된 모델은 공격대상에서 멀리 떨어 진 라우터에서 낮은 임계치를 적용하여 탐지 하게 되며 지역 연합 모델을 통한 지역적인 방어 행동을 취하게 된다. 사전에 취해지는 방어 행동으로 인해 본 시스템은 좋은 성능을 발휘 할 것이다. 시스템의 각 지역연합들은 DDoS 공격의 악의 적인 트래픽의 양을 줄이는 것에 기여 할 것이다.
기존 인터넷의 보안 모델은 모든 통신 상대와 통신 환경에 대한 의심을 기반으로 외부의 공격으로부터 자신을 보호하는 모델이다. 그러나 이 보안 모델은 공격이 지능화됨에 따라 방어도 지속적으로 강화되어야 하는 악순환의 고리에 빠지게 된다. 이런 악순환의 고리를 끊기 위하여 상호 신뢰를 바탕으로 공격자체가 원천적으로 없어지는 신뢰통신 구조를 제안한다. 신뢰통신모델은 먼저 상호신뢰 관계를 가진 제한된 참여자들로 구성된 신뢰 도메인에서 시작하여 외부와의 통신은 잘 정의된 인증 절차에 따라 허용함으로써 도메인의 신뢰 수준을 유지하면서 신뢰 영역을 확장하는 방식을 채택한다. 이 신뢰 모델을 기반으로 신뢰 네트워크 구조를 제안하고 이 구조를 기존의 IP 네트워크에 적용하는 방안을 제시한다.
Jae Han Cho;Jae Min Park;Tae Hyeop Kim;Seung Wook Lee;Jiyeon Kim
Smart Media Journal
/
v.12
no.2
/
pp.66-75
/
2023
Recently, the number of cloud web applications is increasing owing to the accelerated migration of enterprises and public sector information systems to the cloud. Traditional network attacks on cloud web applications are characterized by Denial of Service (DoS) attacks, which consume network resources with a large number of packets. However, HTTP DoS attacks, which consume application resources, are also increasing recently; as such, developing security technologies to prevent them is necessary. In particular, since low-bandwidth HTTP DoS attacks do not consume network resources, they are difficult to identify using traditional security solutions that monitor network metrics. In this paper, we propose a new detection model for detecting HTTP DoS attacks on cloud web applications by collecting the application metrics of web servers and learning them using machine learning. We collected 18 types of application metrics from an Apache web server and used five machine learning and two deep learning models to train the collected data. Further, we confirmed the superiority of the application metrics-based machine learning model by collecting and training 6 additional network metrics and comparing their performance with the proposed models. Among HTTP DoS attacks, we injected the RUDY and HULK attacks, which are low- and high-bandwidth attacks, respectively. As a result of detecting these two attacks using the proposed model, we found out that the F1 scores of the application metrics-based machine learning model were about 0.3 and 0.1 higher than that of the network metrics-based model, respectively.
In this thesis, we will break away from the classic DDoS response system for large-scale denial-of-service attacks that develop day by day, and effectively endure intelligent denial-of-service attacks by utilizing artificial intelligence-based technology, one of the core technologies of the 4th revolution. A possible service model development plan was proposed. That is, a method to detect denial of service attacks and minimize damage through machine learning artificial intelligence learning targeting a large amount of data collected from multiple security devices and web servers was proposed. In particular, the development of a model for using artificial intelligence technology is to detect a Western service attack by focusing on the fact that when a service denial attack occurs while repeating a certain traffic change and transmitting data in a stable flow, a different pattern of data flow is shown. Artificial intelligence technology was used. When a denial of service attack occurs, a deviation between the probability-based actual traffic and the predicted value occurs, so it is possible to respond by judging as aggressiveness data. In this paper, a service denial attack detection model was explained by analyzing data based on logs generated from security equipment or servers.
자율주행 및 robot navigation 시스템에서 물체 인식 성능향상을 위해 대부분 MSF(Multi-Sensor Fusion) 기반 설계를 한다. 따라서 각 센서로부터 들어온 정보를 정합하는 것은 정확한 MSF 알고리즘을 위한 필요조건이다. 다양한 선행 연구에서 2D 데이터에 대한 공격을 진행했다. 자율주행에서는 3D 데이터를 다루어야 하므로 선행 연구에서 하지 않았던 3D 데이터 공격을 진행했다. 본 연구에서는 스케일링 공격 기반 카메라-라이다 센서 간 정합 모델의 정확도를 저하시키는 공격 방법을 제안한다. 제안 방법은 입력 라이다의 포인트 클라우드에 스케일링 공격을 적용하여 다운스케일링 단계에서 공격하고자 한다. 실험 결과, 입력 데이터에 공격하였을 때 공격 전보다 평균제곱 이동오류는 56% 이상, 평균 사원수 각도 오류는 98% 이상 증가했음을 보였다. 다운스케일링 크기 별, 알고리즘별 공격을 적용했을 때, 10×20 크기로 다운스케일링 하고 lanczos4 알고리즘을 적용했을 때 가장 효과적으로 공격할 수 있음을 확인했다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.6
/
pp.1111-1123
/
2023
In recent years, as generative models have developed, research that threatens them has also been actively conducted. We propose a new membership inference attack against text-to-image model. Existing membership inference attacks on Text-to-Image models produced a single image as captions of query images. On the other hand, this paper uses personalized embedding in query images through Textual Inversion. And we propose a membership inference attack that effectively generates multiple images as a method of generating Adversarial Prompt. In addition, the membership inference attack is tested for the first time on the Stable Diffusion model, which is attracting attention among the Text-to-Image models, and achieve an accuracy of up to 1.00.
Journal of the Korea Society of Computer and Information
/
v.5
no.4
/
pp.69-75
/
2000
This paper proposes a network intrusion detection model which can detect the insertion and evasion attacks. These attacks can be prevented when some kind of information are available in the network intrusion detection system. We classified these information with three categories and used each category at setup phase and executing Phase. Within the proposed model, all necessary information which are related with networks and operating systems are maintained in the database and created as a table. This table is used during intrusion detection. The overheads of database and table may be simple in this model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.