모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
딥러닝 분류 모델에 대한 공격 중 하나인 적대적 공격은 입력 데이터에 인간이 구별할 수 없는 섭동을 추가하여 딥러닝 분류 모델이 잘못 분류하도록 만드는 공격이며, 다양한 적대적 공격 알고리즘이 존재한다. 이에 따라 적대적 데이터를 탐지하는 연구는 많이 진행되었으나 적대적 데이터가 어떤 적대적 공격 알고리즘에 의해 생성되었는지 분류하는 연구는 매우 적게 진행되었다. 적대적 공격을 분류할 수 있다면, 공격 간의 차이를 분석하여 더욱 견고한 딥러닝 분류 모델을 구축할 수 있을 것이다. 본 논문에서는 공격 대상 딥러닝 모델이 예측하는 클래스를 기반으로 은닉층의 출력값에서 특징을 추출하고 추출된 특징을 입력으로 하는 랜덤 포레스트 분류 모델을 구축하여 적대적 공격을 탐지 및 분류하는 모델을 제안한다. 실험 결과 제안한 모델은 최신의 적대적 공격 탐지 및 분류 모델보다 정상 데이터의 경우 3.02%, 적대적 데이터의 경우 0.80% 높은 정확도를 보였으며, 기존 연구에서 분류하지 않았던 새로운 공격을 분류한다.
다양한 분야에서 심층 신경망 기반 모델이 사용되면서 뛰어난 성능을 보이고 있다. 그러나 기계학습 모델의 오작동을 유도하는 적대적 공격(adversarial attack)에 의해 심층 신경망 모델의 취약성이 드러났다. 보안 분야에서는 이러한 취약성을 보완하기 위해 의도적으로 모델을 공격함으로써 모델의 강건함을 검증한다. 현재 2D 이미지에 대한 적대적 공격은 활발한 연구가 이루어지고 있지만, 3D 데이터에 대한 적대적 공격 연구는 그렇지 않은 실정이다. 본 논문에서는 뉴럴 렌더링(neural rendering)과 적대적 공격, 그리고 3D 표현에 적대적 공격을 적용한 연구를 조사해 이를 통해 추후 뉴럴 렌더링에서 일어나는 적대적 공격 연구에 도움이 될 것을 기대한다.
네트워크 보안은 정보통신 및 인터넷 기술이 발전함에 따라 그 중요성과 필요성이 더욱 절실해지고 있다. 본 연구에서는 네트워크 보안의 대표적인 침입 차단 시스템의 패킷 필터 및 네트워크 구성요소들을 모델링하였다. 각 모델은 DEVS 모델을 참조한 MODSIM III 기반의 기본 모델(Basic Model)과 결합 모델(Compound Model)의 두 가지 유형으로 정의하였다. 기본 모델은 독립적인 기능을 수행하는 단위 모델을 표현하고, 결합 모델은 여러 개의 모델이 연동되어 상위 레벨의 시스템을 표현한다. 시뮬레이션을 위한 모델링과 그래픽 기능이 강력한 MODSIM III를 기반으로 모델들을 비롯한 시뮬레이션 환경을 구현하였다. 대상 네트워크 환경에서 사용한 공격은 서비스 기부 공격 형태인 SYN flooding 공격과 Smurf 공격을 발생하였다. 이 공격들에 대하여, 패킷 필터 모델에 다양한 보안 정책을 적용하여 시뮬레이션을 실행하였다. 본 연구에서의 시뮬레이션을 통하여, 과거의 단순 패킷 필터링에서 진일보한 Stateful Inspection의 우수한 보안 성능과, 보안 정책의 강도를 점점 높였을 때 보안 성능이 향상되는 점을 검증하였다.
ViT(Vision Transformer)는 트랜스포머 구조에 이미지를 패치들로 나눠 한꺼번에 인풋으로 입력하는 모델이다. CNN 기반 모델보다 더 적은 훈련 계산량으로 다양한 이미지 인식 작업에서 SOTA(State-of-the-art) 성능을 보이면서 다양한 비전 작업에 ViT 를 적용하는 연구가 활발히 진행되고 있다. 하지만, ViT 모델도 AI 모델 훈련시에 생성된 그래디언트(Gradients)를 이용해 원래 사용된 훈련 데이터를 복원할 수 있는 모델 역전 공격(Model Inversion Attacks)에 안전하지 않음이 증명되고 있다. CNN 기반의 모델 역전 공격 및 방어 기법들은 많이 연구되어 왔지만, ViT 에 대한 관련 연구들은 이제 시작 단계이고, CNN 기반의 모델과 다른 특성이 있기에 공격 및 방어 기법도 새롭게 연구될 필요가 있다. 따라서, 본 연구는 ViT 모델에 특화된 모델 역전 공격 및 방어 기법들의 특징을 서술한다.
IoT 네트워크의 증가로 인해 사이버 공격도 함께 증가하고 있으며, 네트워크 침입탐지 시스템(NIDS)의 중요성이 강조되고 있다. 전통적인 NIDS의 한계를 극복하고 더욱 고도화된 사이버 공격에 대응하기 위해 NIDS에 인공지능 모델을 도입하는 추세이다. 인공지능 모델 기반의 NIDS는 인공지능 알고리즘이 가지는 적대적 공격에 대한 취약성을 가지게 된다. 모델 종류 추론 공격은 모델 내부의 정보를 추론하는 적대적 공격의 일종이다. 본 논문은 기존 모델 종류 추론 공격을 더욱 현실적인 가정을 적용하며, NIDS 모델을 타겟으로 최적화된 모델 종류 추론 공격 프레임워크를 제안한다. 제안하는 방식으로 NIDS 모델의 종류를 추론하는 공격 모델을 약 0.92의 분류 정확도를 보이도록 훈련할 수 있었으며, 인공지능 기반 NIDS에 대한 새로운 보안 위협을 제시하며 이에 대한 방어 기술 개발의 중요성을 강조한다.
분산 서비스 거부(DDoS: Distributed Denial of service)공격은 다수의 소스에서 특정 목적지에 대하여 동시에 비정상적으로 대량의 패킷을 전송함으로써 목적지의 대역폭이나 처리력을 점유하게 된다. 최근의 DDoS 공격 통계에 의하면 초당 최대 오백만 패킷에 이르는 공격과 함께, 초당 백만 패킷 이상의 여러 공격들이 발생하고 있음을 보여준다. 이와 같이 DDoS 공격은 그 규모가 커지고 있고, 회수도 빈번하여 지고 있다. 본 논문에서는 DDoS 공격 대비를 위한 비용과 공격 발생시 서비스 중단으로 인한 경제 손실 모델 사례연구에 대하여 기술하고자 한다. 이를 통하여 비용 효율적인 DDoS 공격 대응 및 완화 기법의 설계를 위한 기초 자료로 활용하고자 한다.
최근 사이버공격이 활성화됨에 따라 이러한 많은 공격사례들이 다양한 매체를 통해 접해지고 있다. 사이버공격에 대한 보안공학이나 역공학에 대한 연구는 활발하지만, 이들을 통합하고 비용효과적인 공격공학을 통해 공격시스템을 연계하여 적용시킨 연구는 부족하다. 본 논문에서는, 보안강화형 정보시스템을 보안공학적으로 개발하고, 역공학을 통해 취약점을 식별한다. 이 취약점을 이용하여 공격공학을 통해 공격시스템을 구축하거나 리모델링하는 생명주기모델을 비교 분석하여 각 시스템의 구조 및 행동을 명세화하고, 더욱 실효성 있는 모델링을 제안한다. 또한, 기존의 모델 도구를 확장하여 공격방법 및 시나리오를 기능적, 정적, 동적과 같은 모델의 관점에서 명세하는 도형적 공격명세모델을 제시한다.
서비스 거부 공격은 침입을 위한 침입시도 형태로 나타나며 대표적인 공격으로 Syn Flooding 공격이 있다. Syn Flooding 공격은 신뢰성 및 연결 지향적 전송서비스인 TCP의 종단간에 3-way handshake의 취약점을 이용한 공격이다. 본 논문에서는 네트워크 기반의 지능적 침입 방지 모델을 제안한다. 제안하는 모델은 Syn Flooding 공격을 탐지하기 위하여 패킷 정보를 수집하고 분석한다. 이 모델은 퍼지인식도(Fuzzy Cognitive Maps)를 적용한 결정모듈의 분석 결과를 활용하여 서비스 거부 공격의 위험도를 측정하고 공격에 대응하도록 대응모듈을 학습시킨다. 제안하는 모델은 Syn Flooding 공격의 위험을 격감 또는 방지하는 네트워크 기반의 지능적 침입 방지 모델이다.
유비쿼터스 컴퓨팅은 네트워크로 상호연결된 프로세서로 구성되며, 하나 이상의 컴퓨터로 이뤄진다. 하지만 기존 보안 솔류션은 존속성에 대한 명확한 정의가 결여되어 있어 본 논문에서는 유비쿼터스 컴퓨팅 시스템을 위한 존속성을 기반으로 하여 시스템의 보안 정도를 정량적으로 측정할 수 있는 기법을 제안한다. 존속성을 모델링하기 위한 논리적 첫 단계가 요구사항 도출이므로 먼저 공격 유형 모델을 도출하고 실제공격 사례 중 Code-Red 웜 공격을 공격 유형 모델과 존속성 모델을 통해 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.