• Title/Summary/Keyword: 공격행위

Search Result 375, Processing Time 0.022 seconds

Anomaly Intrusion Detection Using Sequential Properties of Packets (패킷 순차성을 이용한 비정상행위 침입 탐지)

  • 홍동호;유황빈
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.101-106
    • /
    • 2003
  • 인터넷 상에서의 대부분의 네트워크 공격은 공격의 목표가 되는 시스템에 단일 패킷만을 보냄으로써 공격이 이뤄질 수 없다. 그렇기 때문에 침입탐지시스템에서는 내부 네트워크로 들어오고 나가는 패킷들에 대한 일련의 순차성을 알아냄으로써 네트워크 공격을 탐지할 수 있다. 본 연구에서는 이러한 네트워크 패킷의 순차성을 이용하여 비정상행위에 대한 침입탐지 방법을 제안하였으며 또한 일부 비정상행위 탐지에서 사용하고 있는 시간을 기준으로 한 트랜잭션의 분할에서 오는 단점을 지적하고 그것을 보완하기 위하여 탐지 단위로서 사용자의 세션을 사용하였다. TCP/IP 네트워크에서의 사용자 세션 정보를 표현하기 위해서 여러 가지 정보가 사용자 행위 테이블로 표현되며 이러한 사용자 행위 테이블은 서비스 포트 별로 통계적인 정리가 가능하다. 또한 이렇게 정리된 서비스 포트별 정보에서는 확률을 기반으로 한 비정상 행위를 도출할 수 있으며, 이러한 비정상 행위도를 이용하여 침입 판단의 근거자료로 삼을 수 있음을 확인하였다.

  • PDF

Meta-Modeling to Detect Attack Behavior for Security (보안을 위한 공격 행위 감지 메타-모델링)

  • On, Jinho;Choe, Yeongbok;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1035-1049
    • /
    • 2014
  • This paper presents a new method to detect attack patterns in security-critical systems, based on a new notion of Behavior Ontology. Generally security-critical systems are large and complex, and they are subject to be attacked in every possible way. Therefore it is very complicated to detect various attacks through a semantic structure designed to detect such attacks. This paper handles the complication with Behavior Ontology, where patterns of attacks in the systems are defined as a sequences of actions on the class ontology of the systems. We define the patterns of attacks as sequences of actions, and the attack patterns can then be abstracted in a hierarchical order, forming a lattice, based on the inclusion relations. Once the behavior ontology for the attack patterns is defined, the attacks in the target systems can be detected both semantically and hierarchically in the ontology structure. When compared to other attack models, the behavior ontology analysis proposed in this paper is found to be very effective and efficient in terms of time and space.

User Behavior Based Web Attack Detection in the Face of Camouflage (정상 사용자로 위장한 웹 공격 탐지 목적의 사용자 행위 분석 기법)

  • Shin, MinSik;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.365-371
    • /
    • 2021
  • With the rapid growth in Internet users, web applications are becoming the main target of hackers. Most previous WAFs (Web Application Firewalls) target every single HTTP request packet rather than the overall behavior of the attacker, and are known to be difficult to detect new types of attacks. In this paper, we propose a web attack detection system based on user behavior using machine learning to detect attacks of unknown patterns. In order to define user behavior, we focus on features excluding areas where an attacker can camouflage as a normal user. The experimental results shows that by using the path and query information to define users' behaviors, best results for an accuracy of 99% with Decision forest.

Sequence based Intrusion Detection using Similarity Matching of the Multiple Sequence Alignments (다중서열정렬의 유사도 매칭을 이용한 순서기반 침입탐지)

  • Kim Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • The most methods for intrusion detection are based on the misuse detection which accumulates hewn intrusion information and makes a decision of an attack against any behavior data. However it is very difficult to detect a new or modified aoack with only the collected patterns of attack behaviors. Therefore, if considering that the method of anomaly behavior detection actually has a high false detection rate, a new approach is required for very huge intrusion patterns based on sequence. The approach can improve a possibility for intrusion detection of known attacks as well as modified and unknown attacks in addition to the similarity measurement of intrusion patterns. This paper proposes a method which applies the multiple sequence alignments technique to the similarity matching of the sequence based intrusion patterns. It enables the statistical analysis of sequence patterns and can be implemented easily. Also, the method reduces the number of detection alerts and false detection for attacks according to the changes of a sequence size.

Anomaly Detection Scheme of Web-based attacks by applying HMM to HTTP Outbound Traffic (HTTP Outbound Traffic에 HMM을 적용한 웹 공격의 비정상 행위 탐지 기법)

  • Choi, Byung-Ha;Choi, Sung-Kyo;Cho, Kyung-San
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • In this paper we propose an anomaly detection scheme to detect new attack paths or new attack methods without false positives by monitoring HTTP Outbound Traffic after efficient training. Our proposed scheme detects web-based attacks by comparing tags or javascripts of HTTP Outbound Traffic with normal behavioral models which apply HMM(Hidden Markov Model). Through the verification analysis under the real-attacked environment, we show that our scheme has superior detection capability of 0.0001% false positive and 96% detection rate.

Anormal Behavior Detection Using RBF Neural Network (RBF 신경망을 이용한 비정상 행위의 탐지 기법)

  • Kim, H.T.;Kim, Y.H.;Lee, K.S.;Kang, J.M.;Won, Y.
    • Annual Conference of KIPS
    • /
    • 2002.04b
    • /
    • pp.805-808
    • /
    • 2002
  • 컴퓨터 시스템 및 네트워크에 대한 침입 공격의 방법 중 이미 알려진 형태의 공격에 대해서는 상대적으로 탐지가 용이하나 사용자의 비정상행위는 방법의 다양성 때문에 탐지가 매우 어렵다. 그러나, 사용자의 정상적인 행동은 몇 가지 소수의 형태로 특정 지어질 수 있다. 본 논문에서는 상대적으로 변화가 적은 정상 행위를 신경망으로 Modeling하여 이를 비정상 행위 탐지에 적용하는 기법을 제안한다. 이를 위하여 입력 영역을 지역화 하는 특성을 갖는 RBF(Radial-Basis-Fuction) 신경망에 대한 단일 Class의 학습방법을 제안하고, 이를 이용한 비정상 행위에 대한 공격의 탐지에 대한 적용 방안을 제시한다. 비정상 행위 탐지에 대한 적용 가능성을 검증하기 위하여 사용자가 키보드 입력 유형을 학습하고 이를 이용하여 타인의 ID와 Password를 도용한 경우의 탐지에 적용하였다.

  • PDF

Design of Extended TCP preventing for DoS attack (DoS 공격 예방을 위한 확장 TCP 설계)

  • 박진원;김명균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.299-301
    • /
    • 2003
  • 보안의 중요성이 강조되고 있는 요즈음 해킹이라는 용어는 시스템에 침입하여 정보를 빼내거나 수정, 삭제하는 행위를 포함하여 서비스를 방해하는 행위로도 일컬어지고 있다. 보편적으로 많이 사용되고 있는 TCP 프로토콜 자체의 취약점을 이용한 서비스 거부공격이 갈수록 거대해지고 위험한 공격 방식으로 인식되고 있지만 이에 대한 적절한 예방법이 없는 것이 사실이다. 본 논문에서는 TCP 프로토콜을 확장하여 서비스 거부공격에 대한 예방 기능을 가진 프로토콜을 제안한다.

  • PDF

A Portscan Attack Detection Mechanism based on Fuzzy Logic for Abnormal Traffic Control Framework (비정상 트래픽 제어 프레임워크를 위한 퍼지 로직 기반의 포트스캔 공격 탐지 기법)

  • Kim, Jae-Gwang;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.357-361
    • /
    • 2007
  • 비정상 트래픽 제어 프레임워크에 적용된 비정상 트래픽 제어 기술은 침입, 분산서비스거부 공격, 포트스캔 공격과 같은 비정상 행위의 트래픽을 제어하는 공격 대응 방법이다. 이 대응 방법은 비정상 행위에 대한 true-false 방식의 공격 대응 방법이 가지는 높은 오탐율(false-positive rate)을 낮출 수 있다는 장점이 있지만, 공격 지속시간에만 의존하여 비정상 트래픽을 판단하기 때문에, 공격에 대한 신속한 대응을 하지 못한다는 한계를 가지고 있다. 이에 본 논문에서는 비정상 트래픽 제어 프레임워크에 퍼지 로직을 적용하여 신속한 공격 대응이 가능한 포트스캔 공격 탐지 기법을 제안한다.

  • PDF

The Bayesian Framework based on Graphics for the Behavior Profiling (행위 프로파일링을 위한 그래픽 기반의 베이지안 프레임워크)

  • 차병래
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.69-78
    • /
    • 2004
  • The change of attack techniques paradigm was begun by fast extension of the latest Internet and new attack form appearing. But, Most intrusion detection systems detect only known attack type as IDS is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, the experiments to apply various techniques of anomaly detection are appearing. In this paper, we propose an behavior profiling method using Bayesian framework based on graphics from audit data and visualize behavior profile to detect/analyze anomaly behavior. We achieve simulation to translate host/network audit data into BF-XML which is behavior profile of semi-structured data type for anomaly detection and to visualize BF-XML as SVG.

Threat Management System for Anomaly Intrusion Detection in Internet Environment (인터넷 환경에서의 비정상행위 공격 탐지를 위한 위협관리 시스템)

  • Kim, Hyo-Nam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.157-164
    • /
    • 2006
  • The Recently, most of Internet attacks are zero-day types of the unknown attacks by Malware. Using already known Misuse Detection Technology is hard to cope with these attacks. Also, the existing information security technology reached the limits because of various attack's patterns over the Internet, as web based service became more affordable, web service exposed to the internet becomes main target of attack. This paper classifies the traffic type over the internet and suggests the Threat Management System(TMS) including the anomaly intrusion detection technologies which can detect and analyze the anomaly sign for each traffic type.

  • PDF