• Title/Summary/Keyword: 공간.형태 구성

Search Result 923, Processing Time 0.02 seconds

Broadening the Understanding of Sixteenth-century Real Scenery Landscape Painting: Gyeongpodae Pavilion and Chongseokjeong Pavilion (16세기(十六世紀) 실경산수화(實景山水畫) 이해의 확장 : <경포대도(鏡浦臺圖)>, <총석정도(叢石亭圖)>를 중심으로)

  • Lee, Soomi
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.18-53
    • /
    • 2019
  • The paintings Gyeongpodae Pavilion and Chongseokjeong Pavilion were recently donated to the National Museum of Korea and unveiled to the public for the first time at the 2019 special exhibition "Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea." These two paintings carry significant implications for understanding Joseon art history. Because the fact that they were components of a folding screen produced after a sightseeing tour of the Gwandong regions in 1557 has led to a broadening of our understanding of sixteenth-century landscape painting. This paper explores the art historical meanings of Gyeongpodae Pavilion and Chongseokjeong Pavilion by examining the contents in the two paintings, dating them, analyzing their stylistic characteristics, and comparing them with other works. The production background of Gyeongpodae Pavilion and Chongseokjeong Pavilion can be found in the colophon of Chongseokjeong Pavilion. According to this writing, Sangsanilro, who is presumed to be Park Chung-gan (?-1601) in this paper, and Hong Yeon(?~?) went sightseeing around Geumgangsan Mountain (or Pungaksan Mountain) and the Gwandong region in the spring of 1557, wrote a travelogue, and after some time produced a folding screen depicting several famous scenic spots that they visited. Hong Yeon, whose courtesy name was Deokwon, passed the special civil examination in 1551 and has a record of being active until 1584. Park Chung-gan, whose pen name was Namae, reported the treason of Jeong Yeo-rip in 1589. In recognition of this meritorious deed, he was promoted to the position of Deputy Minister of the Ministry of Punishments, rewarded with the title of first-grade pyeongnan gongsin(meritorious subject who resolved difficulties), and raised to Lord of Sangsan. Based on the colophon to Chongseokjeong Pavilion, I suggest that the two paintings Gyeongpodae Pavilion and Chongseokjeong Pavilion were painted in the late sixteenth century, more specifically after 1557 when Park Chung-gan and Hong Yeon went on their sightseeing trip and after 1571 when Park, who wrote the colophon, was in his 50s or over. The painting style used in depicting the landscapes corresponds to that of the late sixteenth century. The colophon further states that Gyeongpodae Pavilion and Chongseokjeong Pavilion were two paintings of a folding screen. Chongseokjeong Pavilion with its colophon is thought to have been the final panel of this screen. The composition of Gyeongpodae Pavilion recalls the onesided three-layered composition often used in early Joseon landscape paintings in the style of An Gyeon. However, unlike such landscape paintings in the An Gyeon style, Gyeongpodae Pavilion positions and depicts the scenery in a realistic manner. Moreover, diverse perspectives, including a diagonal bird's-eye perspective and frontal perspective, are employed in Gyeongpodae Pavilion to effectively depict the relations among several natural features and the characteristics of the real scenery around Gyeongpodae Pavilion. The shapes of the mountains and the use of moss dots can be also found in Welcoming an Imperial Edict from China and Chinese Envoys at Uisungwan Lodge painted in 1557 and currently housed in the Kyujanggak Institute for Korean Studies at Seoul National University. Furthermore, the application of "cloud-head" texture strokes as well as the texture strokes with short lines and dots used in paintings in the An Gyeon style are transformed into a sense of realism. Compared to the composition of Gyeongpodae Pavilion, which recalls that of traditional Joseon early landscape painting, the composition of Chongseokjeong Pavilion is remarkably unconventional. Stone pillars lined up in layers with the tallest in the center form a triangle. A sense of space is created by dividing the painting into three planes(foreground, middle-ground, and background) and placing the stone pillars in the foreground, Saseonbong Peaks in the middle-ground, and Saseonjeong Pavilion on the cliff in the background. The Saseonbong Peaks in the center occupy an overwhelming proportion of the picture plane. However, the vertical stone pillars fail to form an organic relation and are segmented and flat. The painter of Chongseokjeong Pavilion had not yet developed a three-dimensional or natural spatial perception. The white lower and dark upper portions of the stone pillars emphasize their loftiness. The textures and cracks of the dense stone pillars were rendered by first applying light ink to the surfaces and then adding fine lines in dark ink. Here, the tip of the brush is pressed at an oblique angle and pulled down vertically, which shows an early stage of the development of axe-cut texture strokes. The contrast of black and white and use of vertical texture strokes signal the forthcoming trend toward the Zhe School painting style. Each and every contour and crack on the stone pillars is unique, which indicates an effort to accentuate their actual characteristics. The birds sitting above the stone pillars, waves, and the foam of breaking waves are all vividly described, not simply in repeated brushstrokes. The configuration of natural features shown in the above-mentioned Gyeongpodae Pavilion and Chongseokjeong Pavilion changes in other later paintings of the two scenic spots. In the Gyeongpodae Pavilion, Jukdo Island is depicted in the foreground, Gyeongpoho Lake in the middle-ground, and Gyeongpodae Pavilion and Odaesan Mountain in the background. This composition differs from the typical configuration of other Gyeongpodae Pavilion paintings from the eighteenth century that place Gyeongpodae Pavilion in the foreground and the sea in the upper section. In Chongseokjeong Pavilion, stone pillars are illustrated using a perspective viewing them from the sea, while other paintings depict them while facing upward toward the sea. These changes resulted from the established patterns of compositions used in Jeong Seon(1676~1759) and Kim Hong-do(1745~ after 1806)'s paintings of Gwandong regions. However, the configuration of the sixteenth-century Gyeongpodae Pavilion, which seemed to have no longer been used, was employed again in late Joseon folk paintings such as Gyeongpodae Pavilion in Gangneung. Famous scenic spots in the Gwandong region were painted from early on. According to historical records, they were created by several painters, including Kim Saeng(711~?) from the Goryeo Dynasty and An Gyeon(act. 15th C.) from the early Joseon period, either on a single scroll or over several panels of a folding screen or several leaves of an album. Although many records mention the production of paintings depicting sites around the Gwandong region, there are no other extant examples from this era beyond the paintings of Gyeongpodae Pavilion and Chongseokjeong Pavilion discussed in this paper. These two paintings are thought to be the earliest works depicting the Gwandong regions thus far. Moreover, they hold art historical significance in that they present information on the tradition of producing folding screens on the Gwandong region. In particular, based on the contents of the colophon written for Chongseokjeong Pavilion, the original folding screen is presumed to have consisted of eight panels. This proves that the convention of painting eight views of Gwangdong had been established by the late sixteenth century. All of the existing works mentioned as examples of sixteenth-century real scenery landscape painting show only partial elements of real scenery landscape painting since they were created as depictions of notable social gatherings or as a documentary painting for practical and/or official purposes. However, a primary objective of the paintings of Gyeongpodae Pavilion and Chongseokjeong Pavilion was to portray the ever-changing and striking nature of this real scenery. Moreover, Park Chung-gan wrote a colophon and added a poem on his admiration of the scenery he witnessed during his trip and ruminated over the true character of nature. Thus, unlike other previously known real-scenery landscape paintings, these two are of great significance as examples of real-scenery landscape paintings produced for the simple appreciation of nature. Gyeongpodae Pavilion and Chongseokjeong Pavilion are noteworthy in that they are the earliest remaining examples of the historical tradition of reflecting a sightseeing trip in painting accompanied by poetry. Furthermore, and most importantly, they broaden the understanding of Korean real-scenery landscape painting by presenting varied forms, compositions, and perspectives from sixteenth-century real-scenery landscape paintings that had formerly been unfound.

Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis (FCA 기반 계층적 구조를 이용한 문서 통합 기법)

  • Kim, Tae-Hwan;Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.63-77
    • /
    • 2011
  • The World Wide Web is a very large distributed digital information space. From its origins in 1991, the web has grown to encompass diverse information resources as personal home pasges, online digital libraries and virtual museums. Some estimates suggest that the web currently includes over 500 billion pages in the deep web. The ability to search and retrieve information from the web efficiently and effectively is an enabling technology for realizing its full potential. With powerful workstations and parallel processing technology, efficiency is not a bottleneck. In fact, some existing search tools sift through gigabyte.syze precompiled web indexes in a fraction of a second. But retrieval effectiveness is a different matter. Current search tools retrieve too many documents, of which only a small fraction are relevant to the user query. Furthermore, the most relevant documents do not nessarily appear at the top of the query output order. Also, current search tools can not retrieve the documents related with retrieved document from gigantic amount of documents. The most important problem for lots of current searching systems is to increase the quality of search. It means to provide related documents or decrease the number of unrelated documents as low as possible in the results of search. For this problem, CiteSeer proposed the ACI (Autonomous Citation Indexing) of the articles on the World Wide Web. A "citation index" indexes the links between articles that researchers make when they cite other articles. Citation indexes are very useful for a number of purposes, including literature search and analysis of the academic literature. For details of this work, references contained in academic articles are used to give credit to previous work in the literature and provide a link between the "citing" and "cited" articles. A citation index indexes the citations that an article makes, linking the articleswith the cited works. Citation indexes were originally designed mainly for information retrieval. The citation links allow navigating the literature in unique ways. Papers can be located independent of language, and words in thetitle, keywords or document. A citation index allows navigation backward in time (the list of cited articles) and forwardin time (which subsequent articles cite the current article?) But CiteSeer can not indexes the links between articles that researchers doesn't make. Because it indexes the links between articles that only researchers make when they cite other articles. Also, CiteSeer is not easy to scalability. Because CiteSeer can not indexes the links between articles that researchers doesn't make. All these problems make us orient for designing more effective search system. This paper shows a method that extracts subject and predicate per each sentence in documents. A document will be changed into the tabular form that extracted predicate checked value of possible subject and object. We make a hierarchical graph of a document using the table and then integrate graphs of documents. The graph of entire documents calculates the area of document as compared with integrated documents. We mark relation among the documents as compared with the area of documents. Also it proposes a method for structural integration of documents that retrieves documents from the graph. It makes that the user can find information easier. We compared the performance of the proposed approaches with lucene search engine using the formulas for ranking. As a result, the F.measure is about 60% and it is better as about 15%.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF