Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
Tunnel and Underground Space
/
v.30
no.3
/
pp.214-225
/
2020
Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.
The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.3
/
pp.47-53
/
2002
In this paper, we proposed a content-based video search method using the eigen value of key frame and intensity component. We divided the video stream into shot units to extract key frame representing each shot, and get the intensity distribution of the shot from the database generated by using ECA(Eigen Component Analysis). The generated codebook, their index value for each key frame, and the intensity values were used for database. The query image is utilized to find video stream that has the most similar frame by using the euclidean distance measure among the codewords in the codebook. The experimental results showed that the proposed algorithm is superior to any other methols in the search outcome since it makes use of eigen value and intensity elements, and reduces the processing time etc.
Solar insolation is essential to understand the interaction between the earth and solar system, and it is a significant parameter that is utilized in various research fields including earth science, agriculture, and energy engineering. Although solar insolation is broadly measured in the ground-based observation station, it is difficult to identify the spatial distribution of solar insolation accurately. The remote sensing approach is known to have several benefits because it can provide continuous data sets for large area. In this study, we conducted the validation of solar insolation from COMS in the South Korea by comparing with flux tower observation. The results showed that the correlations between COMS and observation were high in both 30 minutes interval data and daily average data. Thus, we can identify that COMS can provide a reasonable estimate of solar insolation.
Journal of the Korean Society of Groundwater Environment
/
v.1
no.2
/
pp.113-120
/
1994
One of the delicate problems in aquifer management is the identification of the spatial distribution of tile hydrological parameters. The observed data are insufficient to identify the distribution of transmissivities in LAN aquifer. To determine the distribution of the transmissivity in LAN aquifer, it would be required to transform the observed heads at the pilot points into transmissivities. Therefore, three procedures wire tackled for the identification of the spatial distribution of the hydrological parameters; geostatistical estimate of the parameter field on the basis of known well point, heads reconstructed by a numerical model, and modification of the values at pilot points by a minimization algorithm. The variogram of Kriging has been applied to a total of 258 transmissivity value in attempt to quantify their distribution of LAN aquifer. Variogram of the observed and optimized transmissivities at pilot points are adapted to the exponential form. So, it is fitted by theoretical one with coefficients of w=0.623, a=2.743. Values of head obtained through numerical analysis are adjusted to the observed values so that heads have been transformed completely into the transmissivities at the observation wells. The procedure represented contour map of the estimated transmissivities and the calculated head.
Previous researches on scalability problem of distributed virtual environment (DVE) have been mainly focused on spatial partitioning of area of interest (AOI). Congestion phenomena by avatar groups in AOI have been neglected relatively However, AOI congestion is highly related to scalability of DVE because it exhausts system resources such as network bandwidth and rendering time, and could be a bar to perform collaboration among participants. In this paper, this will be defined as the problem that must be solved for the realization of the scalable DVE, and a model will be proposed to measure and control congestion situation in AOI. The purposes of the proposed model are to prevent high density of participants in AOI, and to protect stable collaboration in DVE. For evaluation of the performance it is compared with a previous method by defining the resource cost model which is dynamically activated to AOI congestion.
물체 추적시스템은 비디오 감시 시스템, 화상회의 시스템과 같은 다양한 비전 응용 분야에서 점점 비중이 높아지고 있다. 이 시스템에서 가장 널리 사용되고 있는 방법 중 하나로 Particle-Filter를 들 수 있다. 하지만, 이 Particle-Filter의 단점은 유사한 여러 물체를 추적할 때에 그 물체들이 겹치거나 사라질 경우 정확한 추적을 하기 어렵다는 것이다. 이 단점을 극복하기 위해 많은 연구가 진행되고 있으며, 본 논문에서는 이 문제를 극복하기 위한 새로운 방법을 제안하고자 한다. 다중 물체 추적에서 빈번히 일어나는 문제는 두 가지로 요약할 수 있는데, 동일한 다중 물체가 부분적으로 엇갈리거나 다른 객체에 완전히 겹친 후 떨어질 때 한 물체를 중복하여 추적하는 문제(merge and split problem)와 이 때 분리되어 추적은 됐지만, 물체를 혼동하여 추적하는 문제(Labeling problem)이다. 본 논문에서는 이 러한 문제들을 풀기 위해 이미지 필드에서 보다 정확한 확률분포를 만들고, 이 확률분포의 신뢰성을 높이기 위해서 물체의 특징정보를 표현하는 몇 가지 방법을 제안한다. 전자의 문제는 두 가지 문제로 나누어 생각해 보았다. 첫째, 복잡환 환경에서의 분포를 찾아내는 것과 둘째, 추적 중인 물체를 잃어버릴 경우 새로운 샘플을 생성함으로써 나누어 보았다. 이 문제 중 첫번째는 K-means 클러스터링을 이용하여 유사한 물체가 주변에 퍼져 있을 때, 하나의 후보 위치가 아닌, K개의 후보 위치들을 만들어 내어 보다 정확한 추적이 가능하게 하였으며, 두 번째 문제는 추적 중인 물체가 다른 커다란 물체에 가려질 경우이다. 이 상황에서 샘플을 생성하는 방법은 지금까지 해왔던 간단한 환경에서의 생성 범위와는 다르게 넓게 해야 생성시켜야 한다. 이 때 샘플링의 수를 늘리지 않으면서, 최대한 정확하게 추적하기 위해서 동영상에서 물체의 모션을 이용한 모션 히스토그램을 얻어내고, 그 정보를 이용하여 샘플을 생성하는 위치를 조절함으로써 이 문제를 풀어 보았다. 그리고, 후자의 문제인 이미지 필드상에서 확률분포의 신뢰성을 높이기 위한 특징 정보는 기존에 많이 사용하던 칼라 히스토그램에 공간정보의 의미를 부여하는 칼라 히스토그램을 분할하는 방법과 SIFT에서 사용하는 방향정보와 크기정보를 사용했다. 이것들을 사용하여 보다 정확한 물체추적시스템을 다음과 같이 제안한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.8B
/
pp.1577-1585
/
1999
In this paper, we propose detection methods for gradual scene changes such as dissolve, pan, and zoom. The proposal method to detect a dissolve region uses scene features based on spatial statistics of the image. The spatial statistics to define shot boundaries are derived from squared means within each local area. We also propose a method of the camera motion detection using four representative motion vectors in the background. Representative motion vectors are derived from macroblock motion vectors which are directly extracted from MPEG streams. To reduce the implementation time, we use DC sequences rather than fully decoded MPEG video. In addition, to detect the gradual scene change region precisely, we use all types of the MPEG frames(I, P, B frame). Simulation results show that the proposed detection methods perform better than existing methods.
Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.1
/
pp.1-16
/
2020
With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.1
/
pp.6-11
/
2003
Recently, the modular network was proposed in a way to keep the size of the neural network small. The modular network solves the problem by splitting it into sub-problems. In this aspect, fuzzy systems act in a similar way. However, in a fuzzy system, there must be an expert rule which separates the input space. To overcome this, fuzzy-neural network has been used. However, the number of fuzzy rules grows exponentially as the number of input variables grow. In this paper, we would like to solve the size problem of neural networks using modular network with the hierarchic structure. In the hierarchic structure, the output of precedent module affects only the THEN part of the rule. Finally, the rules become shorter being compared to the rule of fuzzy-neural system. Also, the relations between input and output could be understood more easily in the Proposed modular network and that makes design easier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.