Journal of the Korea Society of Computer and Information
/
v.14
no.3
/
pp.139-147
/
2009
The memory based reasoning just stores in the memory in the form of the training pattern of the representative pattern. And it classifies through the distance calculation with the test pattern. Because it uses the techniques which stores the training pattern whole in the memory or in which it replaces training patterns with the representative pattern. Due to this, the memory in which it is a lot for the other machine learning techniques is required. And as the moreover stored training pattern increases, the time required for a classification is very much required. In this paper, We propose the EAS(Evaluation And Selection) algorithm in order to minimize memory usage and to improve classification performance. After partitioning the training space, this evaluates each partitioned space as MDL and PM method. The partitioned space in which the evaluation result is most excellent makes into the representative pattern. Remainder partitioned spaces again partitions and repeat the evaluation. We verify the performance of Proposed algorithm using benchmark data sets from UCI Machine Learning Repository.
The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.505-509
/
2004
본 논문에서는 비디오 스트림 서버에서 의미 기반 검색을 가능하게 하기 위하여 대용량 스트림 데이터를 효과적으로 표현하고 저장하는 기법을 제시한다. 비디오 스트림 내의 각 프레임을 다차원 공간상의 점으로 사상함으로써 비디오 스트림은 다차원 시퀀스(multidimensional sequence)로 표현되고, 이 시퀀스는 다시 비디오 세그먼트로 분할된다. 분할된 세그먼트로부터 정적인 특성과 연속된 프레임의 움직임을 나타내는 트랜드 벡터(trend vector)등의 의미 정보를 추출하여 모델링 함으로서 스트림 데이터를 효과적으로 표현한다. 또한 제안된 기법은 효율적인 검색을 위하여 비디오 세그먼트를 인덱싱하고 저장하는 방법을 제공함으로써 공간 사용의 효율성을 높이고 신속한 검색을 가능하게 한다.
To enhance the user response time of content-based retrieval service for multimedia information, several multi-dimensional index schemes have been proposed. M-tree, a well-known multidimensional index scheme is of metric space access method, and is based on the distance between objects in the metric space. However, since the overlap between index spaces of nodes might enlarge the number of nodes of M-tree accessed for query processing, the user response time for content-based multimedia information retrieval grows longer. In this paper, we propose a node split algorithm which is able to reduce the sire of overlap between index spaces of nodes in M-tree. In the proposed scheme, we choose a virtual center point as the routing object and entry redistribution as the postprocessing after node split in order to reduce the radius of index space of a node, and finally in order to reduce the overlap between the index spaces of routing nodes. From the experimental results, we can see the proposed split algorithm reduce the overlap between index space of nodes and finally enhance the user response time for similarity-based query processing.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.06b
/
pp.45-50
/
1999
이진 영상의 압축은 디지털 도서관, 팩시밀리 전송, 문서 입출력 시스템과 같이 한정된 대역폭과 저장 공간을 가진 응용 분야에서 절실히 요구되고 있다. 현재 많은 영상 압축 알고리즘이 채택하고 있는 대역분할 기법을 문서와 같은 이진 영상의 압축에 적용한다면, 점진적 전송, 축소영상을 통한 빠른 검색 등의 장점을 얻을 수 있다. 그러나, 이진 영상 신호가 두 단계의 휘도 값을 가지므로, 이에 적합한 대역분할 방법과 산술부호기를 선택하여야 한다. 본 논문에서는 표본화-XOR 대역분할 기법을 선택하여, 알파벳 수의 증가를 막고 공간영역에서 국부적인 성질을 얻을 수 있다 또한, 넓은 단일-색 영역을 Zerotree로 대표하여 부호화 되는 신호의 수를 줄이고, 대역분할 구조에서 예측성의 저하를 막기 위한 적절한 조건화문맥과 새로운 부호를 선택한다. 이진 영상에 적합한 대역분할 방법과 산술부호기를 선택하여, 대역분할의 장점과 우수한 압축 성능을 달성할 수 있다.
Computed tomography, which obtains section images from reconstruction process using projection images, has been applied to various fields. The spatial resolution of the reconstructed image depends on the device used in CT system, the object, and the reconstruction process. In this paper, we investigates the effect of the number of projection images and the pixel size of the detector on the spatial resolution of the reconstructed image under the parallel beam geometry. The reconstruction program was written in Visual C++, and the matrix size of the reconstructed image was $512{\times}512$. The numerical bar phantom was constructed and the Min-Max method was introduced to evaluate the spatial resolution on the reconstructed image. When the number of projections used in reconstruction process was small, artifact like streak appeared and Min-Max was also low. The Min-Max showed upper saturation when the number of projections is increased. If the pixel size of the detector is reduced to 50% of the pixel size of the reconstructed image, the reconstructed image was perfectly recovered as the original phantom and the Min-Max decreased as increasing the detector pixel size. This study will be useful in determining the detector and the accuracy of rotation stage needed to achieve the spatial resolution required in the CT system.
KIPS Transactions on Software and Data Engineering
/
v.2
no.7
/
pp.471-478
/
2013
This paper proposes a black-box based test case generation method for Simulink/Stateflow model utilizing the RRT algorithm which is a method to efficiently solve the path planning for complicated systems. The proposed method in the paper tries to solve the reachability problem with the RRT algorithm, which has to be solved for black-box based test case generations. A major problem of the RRT based test case generation algorithms is that the cost such as running time and required memory size is too much for complicated Stateflow model. The typical RRT algorithm expands rapidly-exploring random tree (RRT) in a single state space. But the proposed method expands it in dynamic state space based on the state of Simulink model, consequently reducing the cost. In the paper, a new definition of RRT state space, a distance measure and a test case generation algorithm are proposed. The performance of proposed method is verified through the experiment against Stateflow model.
본 논문은 기존의 3D 게임 엔진에 실시간으로 상호 작용이 가능하고 3D MMORPG(Massive Multi-play Online Role flaying Game) 게임에 적합한 가상 공간을 표현하기 위한 필요한 기술을 분석하고 이를 활용하려 한다. 기존의 머드 게임에 3 차원 기술을 적용하고, 3 차원 물체를 모델링 하는데 있어서 메쉬나 버텍스, 혹은 폴리곤으로 사실적인 지형 처리와 렌드링 속도 향상을 위하여 3 차원 개체의 폴리곤을 동적으로 생성시키고 가시성 판단이나 충돌 검출을 위한 방법으로 Height field 처리 기법과 거리에 변화에 따라 다르게 모델링 된 데이터를 선택적으로 사용하는 CLOD(Continuous Level of Detail) 처리 기법과 입체 컬링 방법으로 옥트리를 이용하여 가상공간을 분해하기 위한 자료 구조로 사용한다. 거리의 변화에 따라 지형을 표현하는 vertex 들을 병합 또는 삭제함으로써 그 표현의 정도를 동적으로 달리 할 수 있는 CLOD 를 이용하여 카메라의 위치와 방향에 따라 적절한 폴리곤을 생성해 낼 수 있다. 본 논문은 기존의 3 차원 공간을 표현하기 위하여 사용되고 있는 옥트리 구조를 이용하여 공간을 분할하고, 이를 세부 수준으로 나누어 처리하기 위한 LOD(Level of Detail)와 CLOD 개념을 이용하여 외부지형을 폴리곤으로 표현하는 방법에 대한 처리 기법과 가시성 판단이나 충돌 검출을 위한 방법을 제시하려 한다.
Journal of Korean Society for Geospatial Information Science
/
v.25
no.1
/
pp.29-36
/
2017
In this paper, we implement a spatial big data analysis prototype based on Spark which is an in-memory system and compares the performance by the spatial split algorithm on this basis. In cluster computing environments, big data is divided into blocks of a certain size order to balance the computing load of big data. Existing research showed that in the case of the Hadoop based spatial big data system, the split method by spatial is more effective than the general sequential split method. Hadoop based spatial data system stores raw data as it is in spatial-divided blocks. However, in the proposed Spark-based spatial analysis system, there is a difference that spatial data is converted into a memory data structure and stored in a spatial block for search efficiency. Therefore, in this paper, we propose an in-memory spatial big data prototype and a spatial split block storage method. Also, we compare the performance of existing spatial split algorithms in the proposed prototype. We presented an appropriate spatial split strategy with the Spark based big data system. In the experiment, we compared the query execution time of the spatial split algorithm, and confirmed that the BSP algorithm shows the best performance.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.28
no.7
/
pp.580-583
/
2017
To compensate the degraded SAR image due to the residual errors and the spatial variant errors remaining after the motion compensation in the airborne SAR, we have introduced the autofocus method based on the partition processing. Thus, after we perform the spatial partition for the spotlight SAR data and the time partition for the stripmap SAR data, we reconstruct the subpatch images for the partitioned data. Then, we perform the local autofocus with the suitability analysis process for the phase errors estimated by the autofocus. Moreover, if the estimated phase errors are not properly compensated for the subpatch images, we perform the phase compensation method with the weight to the estimated phase error close to the degraded subpatch image to increase the SAR image quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.