Journal of Korea Spatial Information System Society
/
v.6
no.1
s.11
/
pp.19-29
/
2004
Recently, studies have been performed to improve the cache performance of the R-Tree in main memory. A general mothed to improve the cache performance of the R-Tree is to reduce size of an entry so that a node can store more entries and fanout of it can increase. However, this method generally requites additional process to reduce information of entries and do not support incremental updates. In addition, the cache miss always occurs on moving between a parent node and a child node. To solve these problems efficiently, this paper proposes and evaluates the PR-Tree that is an extended R-Tree indexing method using prefetching in main memory. The PR-Tree can produce a wider node to optimize prefetching without additional modifications on the R-Tree. Moreover, the PR-Tree reduces cache miss rates that occur in moving between a parent node and a child node. In our simulation, the search performance, the update performance, and the node split performance of the PR-Tree improve up to 38%. 30%, and 67% respectively, compared with the original R-Tree.
Database query optimates the selectivety of a query to find the most efficient access plan. Multi-dimensional selectivity estimation technique is required for a query with multiple attributes because the attributes are not independent each other. Histogram is practically used in most commercial database products because it approximates data distributions with small overhead and small error rates. However, histogram is inadequate for a query with multiple attributes because it incurs high storage overhead and high error rates. In this paper, we propose a novel method for multi-dimentional selectivity estimation. Compressed information from a large number of small-sized histogram buckets is maintained using the discrete cosine transform. This enables low error rates and low storage overheads even in high dimensions. Extensive experimental results show adventages of the proposed approach.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.3
/
pp.30-36
/
2008
The multimedia that is characterized by multi-media, multi-features, multi-representations, huge volume, and varieties, is rapidly spreading out due to the increasing of application domains. Thus, it is urgently needed to develop a multimedia information system that can retrieve the needed information rapidly and accurately from the huge amount of multimedia data. For the content-based retrieval of moving picture, picture information is generally used. It is generally used when video is segmented. Through that, it can be a structural video browsing. The tasking that divides video to shot is called video segmentation, and detecting the cut for video segmentation is called cut detection. The goal of this paper is to divide moving picture using HMMD(Hue-Mar-Min-Diff) color model and edge histogram descriptor among the MPEG-7 visual descriptors. HMMD color model is more familiar to human's perception than the other color spaces. Finally, the proposed retrieval system is implemented as hardware.
We evaluated the land cover classification performance of SegNet, which features semantic segmentation of aerial imagery. We selected four semantic classes, i.e., urban, farmland, forest, and water areas, and created 2,000 datasets using aerial images and land cover maps. The datasets were divided at a 8:2 ratio into training (1,600) and validation datasets (400); we evaluated validation accuracy after tuning the hyperparameters. SegNet performance was optimal at a batch size of five with 100,000 iterations. When 200 test datasets were subjected to semantic segmentation using the trained SegNet model, the accuracies were farmland 87.89%, forest 87.18%, water 83.66%, and urban regions 82.67%; the overall accuracy was 85.48%. Thus, deep learning-based semantic segmentation can be used to classify land cover.
Recently, the target of navigation system is moving from the cars to pedestrians. Many researches are in progress regarding pedestrian navigation, However, in most cases, the path-finding is based on the existing node/link network model. which is widely used for the car navigation, and thus showing its limitation. The reasons arc that a) unlike with a car, the paths that pedestrians take arc not limited to the roads, b) pedestrians an~ not restricted in rotation or direction, and c) they can freely move within the walkable space. No alternatives have been offered yet, especially for openspaces such as a park or square. Therefore, in this research, we suggested appropriate methods to create paths that can be used in pedestrian navigation service, by using motion-planning technology, which is used in the field of robotics for planning the motion of an object, and conducted tests for their applicability.
Proceedings of the Korean Information Science Society Conference
/
2008.06b
/
pp.292-297
/
2008
본 논문은 FPGA 기반 설계에서 주변보다 급격한 온도 변화를 보이는 hotspot들을 탐지하기 위한 열 감지 센서 수를 정하고, 센서의 놓여야 할 배치 장소를 결정하는 알고리즘을 제안한다. 열 감지 센서로는 동적으로 설계가 가능한 ring oscillator 센서 기술을 사용한다는 가정 하에, 센서의 사용 개수를 최소화함과 동시에 최적의 센서 배치 위치 찾는다. 기존의 연구의 단점은 센서가 감지하는 영역 범위를 적당한 크기의 정사각형으로 간주하였기에, 실제 원형의 관측 범위를 보이는 센서 감지 영역의 현실을 올바로 반영하지 못하였으며, 또한 잘 알려진 회로 분할(partition) 기법에 의존한 휴리스틱으로 최적의 결과를 보장하지는 못하였다. 이와는 달리 본 연구에서는 센서의 관측 범위를 원형으로 할 수도 있게 함과 동시에 최적의 해를 보장하는 센서 할당 및 배치 알고리즘을 제안한다. 구체적으로 본 제안 알고즘에서는 소위 “Candidate Coloring 기법”을 통해 센서가 놓여야 할 모든 후보 영역을 표시하며, “Candidate Filtering 기법”을 통해 불필요한 후보 영역들을 완전히 삭제하여 탐색 공간을 줄이게 되며 (해의 최적 해는 항상 유지 되도록 하면서), 마지막으로 Branch-and-Bound 알고리즘을 적용해 최적의 센서 할당 및 배치 결과를 찾아내었다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.417-422
/
2000
In this paper, an efficient fuzzy rule generation scheme for adaptive neuro-fuzzy system modeling using the Independent Component Analysis(ICA) as a preprocessing is proposed. Correlation between inputs was not considered in the conventional neuro- fuzzy modeling schemes, such that enormous number of rules and large amount of error were unavoidable. The correlation between inputs is weakened by employing ICA so that the number of rules and the amount of error are reduced. In simulation, the Box-Jenkins furnace data is used to verify the effectiveness of the proposed method.
최근 차세대 네트워크 패러다임으로 주목받는 소프트웨어 정의 네트워킹 (SDN)에서는 네트워크를 컨트롤 플레인과 데이터 플레인으로 나누고 중앙집중형 제어를 통해 효과적이고 유연한 네트워크 관리를 가능하게 한다. 하지만 잦은 컨트롤 이벤트 발생으로 인한 컨트롤러 및 컨트롤 채널의 부하와 거대한 플로우 엔트리 크기로 인한 스위치 내 TCAM(Temary Content Addressable Memory) 메모리 부족문제 등의 본질적인 문제로 실제 네트워크 적용 시 확장성 문제가 야기된다. 이러한 문제를 해결하기 위해 기존의 연구들은 컨트롤러의 연산능력을 향상시키거나, 컨트롤 이벤트의 발생을 줄이는데 초점이 맞춰져 왔으며, 한정적인 TCAM 공간의 효율적인 사용에 대한 연구는 부족한 상황이다. 따라서 본 논문에서는 효율적인 TCAM 자원 활용을 위한 플로우테이블 관리 기법을 제안한다. 제안 기법은 플로우 엔트리의 클러스터링을 통해 플로우 엔트리를 특성에 따라 그룹화하고 사용빈도를 기준으로 분할 및 병합을 수행함으로써 스위치 내의 가용한 플로우 수를 최대화한다.
Park, Yong-Hun;Yoon, Jong-Hyun;Seo, Bong-Min;Kim, June;Yoo, Jae-Soo
Journal of KIISE:Databases
/
v.36
no.2
/
pp.99-111
/
2009
In wireless sensor networks, various schemes have been proposed to store and process sensed data efficiently. A Data-Centric Storage(DCS) scheme assigns distributed data regions to sensors and stores sensed data to the sensor which is responsible for the data region overlapping the data. The DCS schemes have been proposed to reduce the communication cost for transmitting data and process exact queries and range queries efficiently. Recently, KDDCS that readjusts the distributed data regions dynamically to sensors based on K-D tree was proposed to overcome the storage hot-spots. However, the existing DCS schemes including KDDCS suffer from Query Hot-Spots that are formed if the query regions are not uniformly distributed. As a result, it causes reducing the life time of the sensor network. In this paper, we propose a new DCS scheme, called TPDCS(Time-Parameterized DCS), that avoids the problems of storage hot-spots and query hot-spots. To decentralize the skewed. data and queries, the data regions are assigned by a time dimension as well as data dimensions in our proposed scheme. Therefore, TPDCS extends the life time of sensor networks. It is shown through various experiments that our scheme outperform the existing schemes.
In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.