Q-학습은 최근에 연구되는 강화학습으로서 환경에 대한 정의가 필요 없어 자율이동로봇의 행동학습에 적합한 방법이다. 그러나 다개체 시스템의 학습처럼 환경이 복잡해짐에 따라 개체의 입출력 변수는 늘어나게 되고 Q함수의 계산량은 기하급수적으로 증가하게 된다. 따라서 이러한 문제를 해결하기 위해 다개체 시스템의 Q-학습에 적합한 연속적인 Q-학습 알고리즘을 제안하였다. 연속적인 Q-학습 알고리즘은 개체가 가질 수 있는 모든 상태-행동 쌍을 하나의 Q함수에 표현하는 방법으로서 계산량 및 복잡성을 줄임으로써 동적으로 변하는 환경에 능동적으로 대처하도록 하였다. 제안한 연속적인 Q-학습 알고리즘을 벽으로 막힌 공간에서 두 포식자와 한 먹이로 구성되는 먹이-포식자 문제에 적용하여 먹이개체의 효율적인 회피능력을 검증하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.56-58
/
2014
본 논문에서는 압축 도메인에서 고속으로 움직임을 검출하고 해당 구간을 저장 하는 알고리즘을 제안한다. 제안하는 알고리즘은 H.264/AVC 기반의 압축 비트스트림에서 움직임 벡터와 참조프레임을 이용하여 움직임이 있는 프레임을 검출하고 움직임 유무에 따라 GOP 단위로 저장하는 과정을 수행한다. 압축도메인에서 움직임 검출과 구간 저장을 수행함으로써 복잡도를 낮추고 비디오 저장을 위한 공간을 절약해 실시간 다채널 영상 처리에 최적화 된 성능을 제공한다. 제안하는 움직임 검출 및 저장 시스템은 single thread 환경에서 실시간으로 평균 2957 프레임을 처리 가능하며, Multi thread의 경우 30 fps 영상 98개 채널을 실시간으로 처리 가능하다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.737-739
/
2003
최근에 이동 객체의 위치를 추적하는 기술은 여러 응용 분야에서 중요성이 증대되고 있다. 그러나 지속적으로 움직이는 이동 객체의 위치를 추적하기 위해서는 매우 많은 수의 인덱스 변경 연산을 수행하여야 하므로 R-트리와 같은 전통적인 공간 인덱스 구조로는 처리하기 어렵다. 이러한 문제를 해결하기 위하여 객체의 움직임을 간단한 선형 함수로 가정하여 색인하는 연구들이 있어왔지만, 실제 응용에서는 객체의 움직임이 매우 복잡하므로 이러한 방법을 이용하기 적합하지 않다. 본 논문에서는 복잡한 움직임을 가지는 객체를 효율적으로 색인하기 위한 R-트리의 지연 갱신 기법을 제안한다. 이 기법은 객체가 이동할 때마다 트리의 구조를 변경하지 않고, 객체가 이전에 속해 있던 R-트리의 MBR(Minimum Bounding Rectangle)을 벗어날 때만 트리의 구조를 변경하므로 R-트리의 갱신 연산 비용을 크게 줄일 수 있다. 뿐만 아니라, 기본적인 R-트리의 구조와 연산을 그대로 이용하므로 다양한 R-트리 변종 트리에서도 쉽게 적용이 가능하고, R-트리를 이용하여 이미 구축되어 있는 다양한 응용 환경에 쉽게 이용할 수 있다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1999.11a
/
pp.388-395
/
1999
본 논문의 목적은 퍼지 엔트로피를 이용하여 비선형신호를 예측하는 것이다. 이 방법은 분할된 여러 부 공간(subspace)에 대해 입력 데이터로부터 퍼지 엔트로피를 이용하여 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 바람직한 규칙베이스를 구성하도록 한 것이다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 역전파 알고리즘에 의해 적응되어진다. 또한 매개변수의 수를 줄이기 위하여 제어규칙의 결론부의 출력값은 신경망의 가중치로 구성하였다. 결국 퍼지 신경망의 복잡도를 줄일 수 있다. Mackey-Glass 시계열의 예측에 대한 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안한 방법의 효율성을 입증하고, 제안된 방법을 EEG 생리신호 분석에 이용될 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2003.11a
/
pp.7-10
/
2003
인터프레임 웨이블렛 부호화(Interframe Wavelet Coding)는 3D 서브밴드(Subband) 부호화라고도 하며, 기존의 DCT기반 Hybrid 동영상 부호화 방식에 비해 압축 효율이 우수하고. 특히 스케일러빌리티 기능이 뛰어난 부호화 방법이다. 인터프레임 웨이블렛 부호화 방법에서 복호화 과정 중 가장 연산 량이 많이 요구되는 역(inverse) 웨이블렛 변환이다 역 웨이블렛 변환의 연산 량은 복호화 과정에서 적용된 웨이블렛 변환과 동일한 연산량을 요구한다. 이는 순방향과 역방향에서 동일 길이의 필터와 분해 레벨을 사용해야 하기 때문이다. 이 웨이블렛 변환의 연산 량을 줄이기 위해 본 논문에서는 기존의 시간 밴드 영상에 대해 동일 한 웨이블렛 필터를 사용하여 공간 웨이블렛 필터를 적용하던 것을. 로우밴드에는 9/7 필터를 적용하고 하이 밴드에는 Haar필터를 사용하는 방법을 제안한다. PSNR 실험에서 기존의 9/7 필터만을 사용하는 경우와 비교한 결과 거의 차이가 없었다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.787-789
/
2004
본 논문에서는 별도의 센서를 부착하지 않고 영상만을 이용하여 실시간으로 손 형상을 인식하는 알고리즘에 대해 기술한다. 손은 형상이 매우 복잡하기 때문에 2차원 형상의 불변량에 해당하는 에지의 방향성 히스토그램을 이용하여 인식을 행한다. 이 방법은 복잡한 배경에서 색상정보를 이용하여 손 영역이 정확히 추출되면 계산량이 적고 조명변화에 덜 민감하기 때문에 실시간 손 형상 인식에 적합하다. 본 논문에서는 손의 형상제시 방향이 변하는 경우에도 인식을 가능하게 하기 위해 주성분 분석법을 사용하여 인식오차를 줄이는 방법을 기술한다. 이 방법을 사용함으로써 손 형상이 3차원적으로 회전에 의해 변하는 경우도 인식가능하게 되었다. 실험부분에서 제안하는 방법을 이용하여 가정용 가전제품이나 게임을 제어하는 실시간 휴먼 인터페이스 시스템 제작기술로 활용될 수 있음을 보인다.
오픈소스로부터 촉발된 분산 시스템의 보편화로 기존 상용 시스템으로는 제공하지 못한 다양한 종류의 서비스가 각광받고 있다. 특히, 테라바이트 단위를 넘어 페타바이트 단위의 데이터를 다루는 서비스의 등장으로 드러난 오픈소스 분산 시스템의 문제를 개선하기 위한 시도가 학계 및 업계에서 다각적으로 이뤄지고 있다. 이러한 시도는 새로운 방법론을 제시하는 것에서부터 기존 분산 데이터베이스 관리 시스템(Distributed DBMS)에서 사용된 방법론들을 적용하는 것까지 다양하게 이뤄지고 있다. 본 논문에서는 특정 키 값(Key Value)에 불균등 분포된 데이터에 대한 조인 연산의 탐색 공간을 밀집 인덱스를 통해 줄여 비교적 높은 시간 복잡도를 완화하는 방법론을 제시하고자 한다.
현대 산업 발전에 따라 대량 생산 체제에서 소비자 개별 주문 요건을 반영하여 생산하는 대량맞춤 생산(Mass Customization) 체제로 변화해가고 있다. 이런 대량맞춤 생산 체제의 제품구성(Product Configuration) 시에 나타나는 CSP(Constraint Satisfaction Problem) 해결 방법론을 제시하고 있다. 기존 방법에서는 복잡 다양한 제약조건을 수학적으로 표현하여 제약 조건 검사에서 소요시간과 검색 공간을 최소화 할 수 있는 알고리즘이 제시했다. 그런데 소비자의 주문 요건들이 빠르게 변화되고 복잡 다양 해지고 있다. 그래서 대상 모델 및 제약조건이 변경이 되었을 경우 기존 방법에서 제시하고 있는 CSP 해결에서는 수정 관리 하기가 쉽지 않고 확장성이 낮다. 본 연구에서는 룰 기반 모델링으로 CSP 문제 해결 프로세스 정립을 하여 관리의 편리성을 제공하고 확장성을 향상시킨다.
얼굴 데이터를 사용하는 인식 시스템에서 특징 벡터의 차원은 일반적으로 매우 크다. 패턴인식에서 차원 축소는 중요한 문제로서, 효과적인 얼굴 인식을 위한 특징 벡터의 차원 축소는 필수적이라 할 수 있다. 본 논문에서는 획득된 얼굴 데이터로부터 저 차원의 강건한 특징을 얻기 위하여 웨이블릿을 사용하고, 식별력 있는 특징을 얻기 위하여 direct linear discriminant analysis를 사용하였다. Direct linear discriminant analysis 방법을 사용하기 이전에 웨이블릿을 사용함으로써 계산 복잡도를 줄여줄 뿐만 아니라 식별력을 높여주고 효과적으로 얼굴 데이터의 차원을 축소할 수 있음을 보여 준다. 얼굴의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였으며, 최근접 평균 분류기를 사용함으로써 분류를 위한 시간을 최소화하였다. 본 논문에서 인간의 얼굴인식을 위해 제시한 방법이 얼굴패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.
Yang, Shinhyung;Park, Min Gyun;Lee, Jae Yoo;Kim, Soo Dong
Annual Conference of KIPS
/
2013.11a
/
pp.1576-1579
/
2013
클라우드 저장소 서비스는 특정한 장비나 저장 공간의 제약 사항 없이, 언제 어디서나 신뢰성 높은 서버를 활용하여 사용자들에게 다양한 편의를 제공함으로써 사용량이 급증하고 있다. 더불어, 저장 데이터 요청 빈도, 저장 데이터의 크기, 파일 구조 복잡도의 증가로 인해 오버헤드의 발생에 따른 성능 하락에 관한 이슈가 제기된다. 본 논문에서는 클라우드 백업 애플리케이션의 성능 향상을 위해 컴포지트 패턴 기반의 백업 데이터 관리 기법과 동적 자원 할당 기법으로 구성된 설계 모델을 제안한다. 또한, 실사례의 적용을 통해 본 논문에서 제안하는 설계 모델의 실효성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.