• Title/Summary/Keyword: 공간 보간

Search Result 380, Processing Time 0.027 seconds

Spatio-Temporal Variability of Temperature and Precipitation in Seoul

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Kim, So-Ra;Kwak, Han-Bin
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.467-478
    • /
    • 2008
  • This study analyzes the spatial and temporal variability of temperature ($^{\circ}C$) and precipitation (mm) in Seoul, Korea. The temperature and precipitation data were measured at 31 automatic weather stations (AWSs) in Seoul for 10 years from 1997 to 2006. In this study, inverse distance squared weighting (IDSW) was applied to interpolate the non-measured spaces. To estimate the temperature and precipitation variability, the mean values and frequencies of hot and cold days were examined. The maximum and minimum temperatures were $32.80^{\circ}C$ in 1999 and $-19.94^{\circ}C$ in 2001, respectively. The year 2006 showed the highest frequency of hot temperatures with 79 hot days, closely followed by 2004 and 2005. The coldest year was in 2001 with 105 cold days. The annual mean temperature and precipitation increased by about $1^{\circ}C$ and 483mm during the 10-year period, respectively. The temperature variability differed between high-elevation forested areas and low-elevation residential areas. However, the precipitation variability showed little relation with the topography and land use patterns.

  • PDF

Filling of Incomplete Rainfall Data Using Fuzzy-Genetic Algorithm (퍼지-유전자 알고리즘을 이용한 결측 강우량의 보정)

  • Kim, Do Jin;Jang, Dae Won;Seoh, Byung Ha;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.97-107
    • /
    • 2005
  • As the distributed model is developed and widely used, the accuracy of a rainfall measurement and more dense rainfall observation network are required for the reflection of various spatial properties. However, in reality, it is not easy to get the accurate data from dense network. Generally, we could not have the proper rainfall gages in space and even we have proper network for rainfall gages it is not easy to reflect the variations of rainfall in space and time. Often, we do also have missing rainfall data at the rainfall gage stations due to various reasons. We estimate the distribution of mean areal rainfall data from the point rainfalls. So, in the aspect of continuous rainfall property in time, we should fill the missing rainfall data then we can represent the spatial distribution of rainfall data. This study uses the Fuzzy-Genetic algorithm as a interpolation method for filling the missing rainfall data. We compare the Fuzzy-Genetic algorithm with arithmetic average method, inverse distance method, normal ratio method, and ratio of distance and elevation method which are widely used previously. As the results, the previous methods showed the accuracy of 70 to 80 % but the Fuzzy-Genetic algorithm showed that of 90 %. Especially, from the sensitivity analysis, we suggest the values of power in the equation for filling the missing data according to the distance and elevation.

  • PDF

Spatio-tempers Change Prediction and Variability of Temperature and Precipitation (기온 및 강수량의 시공간 변화예측 및 변이성)

  • Lee, Min-A;Lee, Woo-Kyun;Song, Chul-Chul;Lee, Jun-Hak;Choi, Hyun-Ah;Kim, Tae-Min
    • Spatial Information Research
    • /
    • v.15 no.3
    • /
    • pp.267-278
    • /
    • 2007
  • Internationally many models are developed and applied to predict the impact of the climate change, as occurring a lot of symptoms by climate change. Also, in Korea, according to increasing the application of the climate effect model in many research fields, it is required to study the method for preparing climate data and the characteristics of the climate. In this study IDSW (Inverse Distance Squared Weighting), one of the spatial statistic methods, is applied to interpolate. This method estimates a point of interest by assigning more weight to closer points, which are limited to be select by 3 in 100 km radius. As a result, annual average temperature and precipitation had increased by $0.4^{\circ}C$ and 412 mm during 1977 to 2006. They are also predicted to increase by $3.96^{\circ}C$, 319 mm in the 2100 compared to 2007. High variability of temperature and precipitation for last 30 years shows in some part of the Gangwon-do and in the southern part of Korea. Besides in the study of the variable trend, the variability of temperature and precipitation is inclined to increase in Gangwon-do and southern east part, respectively. However, during 2071 to 2100 variability of temperature is predicted to be high in midwest of Korea and variability of precipitation in the east. In the trend of variability, variability of temperature is apt to increase into west south, and variability of precipitation increase in midwest and a part of south.

  • PDF

Regionalization of Extreme Rainfall with Spatio-Temporal Pattern (극치강수량의 시공간적 특성을 이용한 지역빈도분석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Byung-Sik;Yoon, Seok-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

3D Building Modeling Using Aerial LiDAR Data (항공 LiDAR 데이터를 이용한 3차원 건물모델링)

  • Cho, Hong-Beom;Cho, Woo-Sug;Park, Jun-Ku;Song, Nak-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.141-152
    • /
    • 2008
  • The 3D building modeling is one of crucial components in constructing 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes, which indeed take great amount of time and efforts. In recent years, many researches on 3D building modeling using aerial LiDAR data have been actively performed to aim at overcoming the limitations of existing 3D building modeling methods. Either techniques with interpolated grid data or data fusion with digital map and images have been investigated in most of existing researches on 3D building modeling with aerial LiDAR data. The paper proposed a method of 3D building modeling with LiDAR data only. Firstly, octree-based segmentation is applied recursively to LiDAR data classified as buildings in 3D space until there are no more LiDAR points to be segmented. Once octree-based segmentation is completed, each segmented patch is thereafter merged together based on its geometric spatial characteristics. Secondly, building model components are created with merged patches. Finally, a 3D building model is generated and composed with building model components. The experimental results with real LiDAR data showed that the proposed method was capable of modeling various types of 3D buildings.

Spatial Estimation of Forest Species Diversity Index by Applying Spatial Interpolation Method - Based on 1st Forest Health Management data- (공간보간법 적용을 통한 산림 종다양성지수의 공간적 추정 - 제1차 산림의 건강·활력도 조사 자료를 이용하여 -)

  • Lee, Jun-Hee;Ryu, Ji-Eun;Choi, Yu-Young;Chung, Hye-In;Jeon, Seong-Woo;Lim, Jong-Hwan;Choi, Hyung-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Development of Regularized Expectation Maximization Algorithms for Fan-Beam SPECT Data (부채살 SPECT 데이터를 위한 정칙화된 기댓값 최대화 재구성기법 개발)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Soo-Jin;Kim, Kyeong-Min;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.464-472
    • /
    • 2005
  • Purpose: SPECT using a fan-beam collimator improves spatial resolution and sensitivity. For the reconstruction from fan-beam projections, it is necessary to implement direct fan-beam reconstruction methods without transforming the data into the parallel geometry. In this study, various fan-beam reconstruction algorithms were implemented and their performances were compared. Materials and Methods: The projector for fan-beam SPECT was implemented using a ray-tracing method. The direct reconstruction algorithms implemented for fan-beam projection data were FBP (filtered backprojection), EM (expectation maximization), OS-EM (ordered subsets EM) and MAP-EM OSL (maximum a posteriori EM using the one-step late method) with membrane and thin-plate models as priors. For comparison, the fan-beam protection data were also rebinned into the parallel data using various interpolation methods, such as the nearest neighbor, bilinear and bicubic interpolations, and reconstructed using the conventional EM algorithm for parallel data. Noiseless and noisy projection data from the digital Hoffman brain and Shepp/Logan phantoms were reconstructed using the above algorithms. The reconstructed images were compared in terms of a percent error metric. Results: for the fan-beam data with Poisson noise, the MAP-EM OSL algorithm with the thin-plate prior showed the best result in both percent error and stability. Bilinear interpolation was the most effective method for rebinning from the fan-beam to parallel geometry when the accuracy and computation load were considered. Direct fan-beam EM reconstructions were more accurate than the standard EM reconstructions obtained from rebinned parallel data. Conclusion: Direct fan-beam reconstruction algorithms were implemented, which provided significantly improved reconstructions.