• Title/Summary/Keyword: 공간적 사고능력

Search Result 62, Processing Time 0.018 seconds

Effect of GIS-integrated Lessons on Spatial Thinking Abilities and Geographical Skills (GIS를 활용한 수업이 공간적 사고능력과 지리적 기능에 미치는 영향)

  • Chun, Bo-Ae
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.820-844
    • /
    • 2010
  • This study investigates the effect of GIS-integrated lessons on spatial thinking abilities and geographical skills using discourse analysis along with a comparative three-case case study method. A series of curricula were designed and implemented in an 8th grade classroom for a semester. The data collected consist of the dialogue transcripts of six consecutive GIS-integrated lessons. The transcripts were analyzed to identify the moves (speech acts) used by each student and to classify discourse content of spatial thinking and geographical skills. Based on three individual case studies, a cross-case study was performed to uncover any relationship between the phenomenon and the contexts. The empirical evidence from discourse analysis demonstrated that students were able to generate appropriate terms representative of spatial thinking and geographical skills although students appeared to possess primarily lower-order spatial abilities, followed by a moderate-level of spatial abilities. Considering that the unit was implemented in a biology class rather than a geography class the result reflected the fact that the student's spatial thinking and geographical skills were attributable to the GIS-integrated lessons. Thus, the results have a great implication for GIS-integrated lessons and geography education as an innovative tool for improving student's spatial thinking and geographical skills.

Structuring of Elementary Students' Spatial Thinking with Spatial Ability in Learning of Volcanoes and Earthquakes Using GeoMapApp-Based Materials (GeoMapApp 자료를 이용한 화산과 지진 학습에서 초등학생의 공간 능력에 따른 공간적 사고의 발현 양상)

  • Song, Donghyuk;Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.3
    • /
    • pp.390-406
    • /
    • 2021
  • This study investigated how elementary students with different spatial ability constructed spatial thinking process about on volcanoes and earthquakes with GeoMapApp-based materials. Students' spatial thinking process was analyzed in terms of spatial concept recognized, tools of spatial representation, and their spatial reasoning to construct topographic structure. The student group with high-scored spatial ability showed the spatial reasoning based on internal representation of building mental images through sectional division of horizontal distance, directly connected with spatial concept, or distorting spatial concept. The student group with low-scored spatial ability built the spatial reasoning directly connected with spatial concept instead of transforming into internal representation, and partially recognized spatial concept on either distance or depth. Based on the results, we argued identifying spatial concepts such as distance, height, or depth from the GeoMapApp data would be funda- mental for the better spatial thinking.

Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami- (중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로)

  • Seo, Ji Hee;Yeun, Jong Kook;Lee, Kwang Ho
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.785-799
    • /
    • 2013
  • The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.

  • PDF

Problems and Suggestions for Astronomy Textbook Images and Inquiries Raised by Pre-service Teachers: From the Perspective of Spatial Thinking (공간적 사고 관점에서 천문 분야 교과서 삽화 및 탐구활동에 대해 예비교사가 인식한 문제점과 개선안)

  • Kim, Jong-Uk
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.501-520
    • /
    • 2022
  • Considering the importance of spatial thinking in the process of learning astronomy, it is necessary to educate pre-service teachers on teaching methods that consider spatial thinking from the teacher training program stage. Accordingly, after providing education on spatial thinking to pre-service science teachers, problems and improvement plans perceived by them were explored for the images and inquiry activities of astronomy textbook units. In this study, spatial thinking in the astronomical domain was defined as the amalgam of the concepts of space, representation tools, and reasoning processes. The juniors attending the University of Education in the metropolitan area were educated on spatial thinking for two weeks in October 2021. They were then asked to voluntarily select one of the astronomy units to analyze problems in the textbooks and present modification plans to address those problems. Finally, 33 cases presented by 22 pre-service science teachers were analyzed, and the results of the study were as follows. Pre-service teachers recognized the problems in textbooks in terms of the concepts of space and reasoning processes, and proposed improvement plans to supplement them. However, in some cases, even if pre-service teachers properly recognized a problem, the improvement plan was not appropriate, or they were not able to analyze the images or inquiry activities in terms of spatial thinking. This study is significant in that it shows that pre-service teachers have the potential to properly reorganize and revise textbooks by participating in teacher training programs on spatial thinking. Furthermore, based on the results of this study, the direction of the teacher training program concerning spatial thinking was discussed.

공간 시각화 과정에서의 교구의 역할

  • Jeon, Pyeong-Guk;Jeong, Bu-Yong
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.87-92
    • /
    • 2003
  • 본 연구의 목적은 초등학교 5학년의 도형 영역에서 도형의 모양과 변환을 대상으로 공간 시각화하는 과정에서 나타나는 교구의 역할을 알아보고자 '공간 과제'를 수행하는 과정에서 학습 능력 수준에 따라 나타나는 교구 활용 의존도 및 교구의 역할을 비교 ${\cdot}$ 분석하고자 질적 연구를 수행하였다. 양적 측면에서 아동 C(학습능력 하: 33%), 아동 A(학습능력 상: 18%), 아동 B(학습능력 중: 15%) 순으로 나타났지만, 문제 해결 과정의 단계에서 나타나는 교구의 활용은 서로 간의 다른 특징을 보였다. 친근감을 느낄 수 있는 교구 사용을 통해 아동은 과제 해결을 위한 수학적 사고를 시작하였고, 새로운 방법 모색에 관심을 가졌으며, 유익한 시행착오를 제공하여 아동에게 자신의 사고에 대한 반성과 구체화를 촉진시켰다.

  • PDF

The Development and Application of an Astronomy Education Program Reflecting Astronomical Thinking: A Case of Planetarium Class at Science Museum (천문학적 사고를 반영한 천문교육 프로그램의 개발 및 적용: 과학관 천체 투영관 수업 사례)

  • Choi, Joontae;Lee, Kiyoung;Park, Jaeyong
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.86-106
    • /
    • 2019
  • The purpose of this study is to develop an astronomy education program reflecting astronomical thinking to be used at science museum and to investigate the effect of the program on the improvement of astronomical thinking ability of high school students. After selecting the components of astronomical thinking through literature studies, we developed an astronomy education program consisting of four stages: demonstration and observation, and question and thinking, support and group discussion, demonstration and assessment. In order to verify the effectiveness of the program, we conducted a covariance analysis on the pre- and post-tests of the experimental group and control group to examine the level of students' thinking before and after using the program in teaching and learning. As a result, it was confirmed that the astronomy education program reflecting astronomical thinking was effective in promoting students' astronomical thinking ability. In particular, this program was effective in enhancing the ability of modeling by reconstructing the observed astronomical phenomenon from the viewpoint of the universe with respect to spatial thinking in the astronomy domain. It was also effective to improve the ability of organizing the system by grasping the relationship between the elements constituting the astronomical system in relation to the system thinking in the astronomy domain. This study is significant in suggesting a specific teaching and learning program to develop students' astronomical thinking.

Relationship between Music Cognitive Skills and Academic Skills (음악의 인지기술과 학습 기술과의 관계)

  • Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2006
  • Melody is defined as adding spatial dimension to the rhythm which is temporal concept. Being able to understand melodic pattern and to reproduce the pattern also requires cognitive skills. Since 1980, there has been much research on the relationship between academic skills and music cognitive skills, and how to transfer the skills learned in music work to the academic learning. The study purported to examine various research outcomes dealing with the correlational and causal relationships between musical and academic skills. The two dominating theories explaining the connection between two skills ares are "neural theory" and "near transfer theory." The theories focus mainly on the transference of spatial and temporal reasoning which are reinforced in the musical learning. The study reviewed the existing meta-analysis studies, which provided evidence for positive correlation between academic and musical skills, and significance of musical learning in academic skills. The study further examined specific skills area that musical learning is correlated, such as mathematics and reading. The research stated that among many mathematical concepts, proportional topics have the strongest correlation with musical skills. Also with reading, temporal processing also has strong relationship with auditory skills and motor skills, and further affect language and literacy ability. The study suggest that skills learned in the musical work can be transferred to other areas of learning and structured music activities may be every efficient for children for facilitating academic concepts.

  • PDF

A Study on the Chinese National University Entrance Examination in Mathematics (중국의 대학입학 수학 시험 분석 연구)

  • Nam, Jin-Young;Joung, Youn-Joon
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • This study investigated the Chinese national university entrance examination (Gaokao) in mathematics administered in 2009 and 2010 to draw out some implications on the College Scholastic Ability Test (CSAT) in mathematics of Korea. To evaluate the attainments of basic mathematical skills and multilateral abilities required for further studies in university, the Gaokao mathematics is set in two forms(Art/Science), based on the Chinese national mathematics curriculum. The types of items in the Gaokao mathematics are multiple-choice, single-answer, and write-out-answer. The mathematical abilities that the Gaokao mathematics evaluates are mathematical reasoning, operation, geometrical imagination, application, and creativity. As a result, some implications on the Korean CSAT are drawn out in terms of the level of difficulty, the types of items, the arrangements, and the scores of items.

  • PDF

Conception of Carbon Cycle in High School Students According to the Difference of Spatial Perception Ability (고등학생들의 공간지각능력에 따른 탄소 순환 개념 연구)

  • Lee, Ji-Eun;Han, Shin;Park, Taeyoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.3
    • /
    • pp.308-322
    • /
    • 2017
  • It is the purpose of the study to investigate how high school students understand the concept of carbon cycle according to their spatial perception ability. For this, a total of 30 male students and 33 female students, who belong to the science course of the 2nd grade at a general co-education high school located in a megalopolis of Korea and have finished the class of Earth Science I in the first semester, took part in the spatial perception ability test, and four male students and four female students were selected as members of two groups : one group of higher spatial perception ability and the other group of lower spatial perception ability, and they agreed to participate in the study and have got the test of the carbon cycle concept. The results are as followings. It was found that the students who had higher spatial perception ability recorded more scores in the carbon cycle concept, state change concept, and process concept at the factor of word association and the carbon cycle concept, state change and process concept at the factor of drawing than those who had lower spatial perception ability. Connecting link used in the systemic viewpoint was disclosed like this in the factor of causal map of those who had higher spatial perception ability : one student 2 and another one student 1 and the other two students 0 : and in the factor of drawing three students 1 and the other 0 ; But nothing was found in the factors of causal map and drawing of those who had lower spatial perception ability. In addition, it was also found that those students who had higher spatial perception ability, when compared with those students who had lower spatial perception ability, have understood the fact that carbon moves through the interaction of the earth system's lower parts; Three students, who showed higher spatial perception ability, had a low level of systemic thinking concept, and one student who had higher spatial perception ability and four students who had lower spatial perception ability did not have a systemic thinking concept.

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process (공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용)

  • Shin, Jung-Yun;Yang, Il-Ho;Park, Sang-woo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.371-390
    • /
    • 2021
  • The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.