• Title/Summary/Keyword: 공간자기회귀모델

Search Result 14, Processing Time 0.028 seconds

A Spatial-Temporal Correlation Analysis of Housing Prices in Busan Using SpVAR and GSTAR (SpVAR(공간적 벡터자기회귀모델)과 GSTAR(일반화 시공간자기회귀모델)를 이용한 부산지역 주택가격의 시공간적 상관성 분석)

  • Kwon, Youngwoo;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.245-256
    • /
    • 2024
  • Since 2020, quantitative easing and easy money policies have been implemented for the purpose of economic stimulus. As a result, real estate prices have skyrocketed. In this study, the relationship between sales and rental prices by housing type during the period of soaring real estate prices in Busan was analyzed spatio-temporally. Based on the actual transaction price data, housing type, transaction type, and monthly data of district units were constructed. Among the spatio-temporal analysis models, the SpVAR, which is used to understand the temporal and spatial effects of variables, and the GSTAR, which is used to understand the effects of each region on those variables, were used. As a result, the sales price of apartment had positive effect on the sale price of apartment, row house, and detached house in the surrounding area, including the target area. On the other hand, it was confirmed that demand was converted to apartment rental due to an increase in apartment sales prices, and the sale price fell again over time. The spatio-temporal spillover effect of apartments was positive, but the positive effect of row house and detached house were concentrated in the original downtown area.

Spatial Data Analysis for the U.S. Regional Income Convergence,1969-1999: A Critical Appraisal of $\beta$-convergence (미국 소득분포의 지역적 수렴에 대한 공간자료 분석(1969∼1999년) - 베타-수렴에 대한 비판적 검토 -)

  • Sang-Il Lee
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.212-228
    • /
    • 2004
  • This paper is concerned with an important aspect of regional income convergence, ${\beta}$-convergence, which refers to the negative relationship between initial income levels and income growth rates of regions over a period of time. The common research framework on ${\beta}$-convergence which is based on OLS regression models has two drawbacks. First, it ignores spatially autocorrelated residuals. Second, it does not provide any way of exploring spatial heterogeneity across regions in terms of ${\beta}$-convergence. Given that empirical studies on ${\beta}$-convergence need to be edified by spatial data analysis, this paper aims to: (1) provide a critical review of empirical studies on ${\beta}$-convergence from a spatial perspective; (2) investigate spatio-temporal income dynamics across the U.S. labor market areas for the last 30 years (1969-1999) by fitting spatial regression models and applying bivariate ESDA techniques. The major findings are as follows. First, the hypothesis of ${\beta}$-convergence was only partially evidenced, and the trend substantively varied across sub-periods. Second, a SAR model indicated that ${\beta}$-coefficient for the entire period was not significant at the 99% confidence level, which may lead to a conclusion that there is no statistical evidence of regional income convergence in the US over the last three decades. Third, the results from bivariate ESDA techniques and a GWR model report that there was a substantive level of spatial heterogeneity in the catch-up process, and suggested possible spatial regimes. It was also observed that the sub-periods showed a substantial level of spatio-temporal heterogeneity in ${\beta}$-convergence: the catch-up scenario in a spatial sense was least pronounced during the 1980s.

A study using spatial regression models on the determinants of the welfare expenditure in the local governments in Korea (공간회귀분석을 통한 지방자치단체 복지지출의 영향요인에 관한 연구)

  • Park, Gyu-Beom;Ham, Young-Jin
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.89-99
    • /
    • 2018
  • The purpose of this study is to analyse the determinants of the change in the welfare expenditure of local governments in 2015. This study analyzed the spatial correlation of welfare expenditure among neighboring local governments and determined the factors affecting the welfare expenditures. According to the results of the study, spatial correlation of welfare expenditure among local governments appears. Determinants, such as socio-economic factors, administrative factors, public financial factors are affecting the amount of the welfare expenditures, but local political factors, and local tax, last year's budgets are not correlated with the amount of local welfare expenditures. In this study, it is significant to found out that the spatial correlation of welfare expenditure among the local governments and to examine the determinants. If possible, it is necessary to analyze the time-series analysis using the multi-year welfare expenditure data, expecially self-welfare expenditures.

Analysis on the Spatial Dimension of the Commercial Domains: the Case of Seoul, Korea (상업적 도메인의 공간 분석에 관한 연구 - 서울을 사례로 -)

  • Hee Yeon Lee;Yong Gyun Lee
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.195-211
    • /
    • 2004
  • The innovation of information and communication technology has brought the emergence of the digital economy in which the growing importance of the Internet for the production and consumption of information has caused a rapid increase of commercial domains. Domains are basic form of Internet address for the delivery of information, but the location of registered commercial domains is not free from a spatial context. Utilizing a database of commercial domain registrations, spatial statistical methods and GIS, the spatial dimensions of the commercial domains are explored for the city of Seoul. Through this research, it was found that the commercial domains were unevenly distributed, namely 44% of commercial domains are located at 3 Gus in Seoul. The locations of commercial domains by themselves represented a strong spatial autocorrelation among adjacent places. In order to identify factors affecting spatial variation in the development of the commercial domains among Dongs, a conditional spatial autoregressive model which effectively eliminates a spatial autocorrelation was used. As a result of this research, it is clearly shown that the selective location of firms having commercial domains and their role in economic activities are influencing the spatial structure of urban with dynamic mix of spatial characteristic.

Spatial Autocorrelation and the Turnout of the Early Voting and Regular Voting: Analysis of the 21st General Election at Dong in Seoul (공간적 자기상관성과 관내사전투표와 본투표의 투표율: 제21대 총선 서울시 동별 분석)

  • Lim, Sunghack
    • Korean Journal of Legislative Studies
    • /
    • v.26 no.2
    • /
    • pp.113-140
    • /
    • 2020
  • This study is meaningful in that it is the first analysis of Korean elections using the concept of spatial autocorrelation. Spatial autocorrelation means that an event occurring in one location in space has a high correlation with an event occurring in the surrounding area. The voter turnout rate in the 21st general election of Seoul area was divided into the early-voting turnout and voting-day turnout, and the spatial pattern of the turnout was examined. Most of the previous studies were based on the unit of the precinct and personal data, but this study analyzed on the basis of the lower unit, Eup-myeon-dong, and analyzed using spatial data and aggregate data. Moran I index showed a fairly high spatial autocorrelation of 0.261 in the voting-day turnout, while the index of the early-voting turnout was low at 0.095, indicating that there was little spatial autocorrelation despite statistical significance. The voting-day turnout, which showed strong spatial autocorrelation, was compared and analyzed using the OLS regression model and the spatial statistics model. In the general regression model, the coefficient of determination R2 rose from 0.585261 to 0.656631 in the spatial error model, showing an increase in explanatory power of about 7 percentage points. This means that the spatial statistical model has high explanatory power. The most interesting result is the relationship between the early-voting turnout and the voting-day turnout. The higher the early-voting turnout is, the lower the voting-day turnout is. When the early-voing turnout increases by about 2%, the voting-day turnout drops by about 1%. In this study, the variables affecting the early-voting turnout and the voting-day turnout are very different. This finding is different from the previous researches.

A Study on Scale Effects of the MAUP According to the Degree of Spatial Autocorrelation - Focused on LBSNS Data - (공간적 자기상관성의 정도에 따른 MAUP에서의 스케일 효과 연구 - LBSNS 데이터를 중심으로 -)

  • Lee, Young Min;Kwon, Pil;Yu, Ki Yun;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2016
  • In order to visualize point based Location-Based Social Network Services(LBSNS) data on multi-scaled tile map effectively, it is necessary to apply tile-based clustering method. Then determinating reasonable numbers and size of tiles is required. However, there is no such criteria and the numbers and size of tiles are modified based on data type and the purpose of analysis. In other words, researchers' subjectivity is always involved in this type of study. This is when Modifiable Areal Unit Problem(MAUP) occurs, that affects the results of analysis. Among LBSNS, geotagged Twitter data were chosen to find the influence of MAUP in scale effects perspective. For this purpose, the degree of spatial autocorrelation using spatial error model was altered, and change of distributions was analyzed using Morna's I. As a result, positive spatial autocorrelation showed in the original data and the spatial autocorrelation was decreased as the value of spatial autoregressive coefficient was increasing. Therefore, the intensity of the spatial autocorrelation of Twitter data was adjusted to five levels, and for each level, nine different size of grid was created. For each level and different grid sizes, Moran's I was calculated. It was found that the spatial autocorrelation was increased when the aggregation level was being increased and decreased in a certainpoint. Another tendency was found that the scale effect of MAUP was decreased when the spatial autocorrelation was high.

Analysis of Spatial Characteristics of Vacant Houses using Geographic Weighted Regression Model - Focus on Busan Metropolitan City - (지리가중회귀모델을 적용한 빈집 발생의 공간적 특성 분석 - 부산광역시를 대상으로 -)

  • KIM, Ji-Yun;KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.68-79
    • /
    • 2021
  • The recent occurrence of vacant houses in urban areas is a remarkable social problem. One of the physical declines, the occurrence of vacant houses, accelerates various social and economic declines, such as a decline in population and a slump in the commercial district. Vacant houses have regional characteristics and spatial influence, and it is necessary to approach them locally in order to grasp the exact status of vacant houses. Therefore, in this study, the effect of urban decline on the occurrence of vacant homes was examined by region using global Moran's I and Geographic Weighted Regression(GWR) model. As a result of the analysis, there were spatial autocorrelation and heterogeneity in the occurrence of vacant houses in each eup·myeon·dong, Busan metropolitan city. In addition, there is a difference in the influence of each variable of urban decline on the occurrence of vacant houses, and even the same variable of urban decline has different effects on the occurrence of vacant houses in different regions. Therefore, it is expected that a more efficient vacant home management plan can be presented if the GWR model is used to analyze the coefficient values differentiated by region and categorize the occurrence of vacant houses.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF

Analysis of Spatio-temporal Pattern of Urban Crime and Its Influencing Factors (GIS와 공간통계기법을 이용한 시·공간적 도시범죄 패턴 및 범죄발생 영향요인 분석)

  • Jeong, Kyeong-Seok;Moon, Tae-Heon;Jeong, Jae-Hee;Heo, Sun-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.12-25
    • /
    • 2009
  • The aim of this study is to analyze the periodical and spatial characteristics of urban crime and to find out the factors that affect the crime occurrence. For these, crime data of Masan City was examined and crime occurrence pattern is ploted on a map using crime density and criminal hotspot analysis. The spatial relationship of crime occurrence and factors affecting crime were also investigated using ESDA (Exploratory Spatial Data Analysis) and SAR (Spatial Auto-Regression) model. As a result, it was found that crimes had strong tendency of happening during a certain period of time and with spatial contiguity. Spatial contiguity of crimes was made clear through the spatial autocorrelation analysis on 5 major crimes. Especially, robbery revealed the highest spatial autocorrelation. However as a autocorrelation model, Spatial Error Model(SEM) had statistically the highest goodness of fit. Moreover, the model proved that old age population ratio, property tax, wholesale-retail shop number, and retail & wholesale number were statistically significant that affect crime occurrence of 5 most major crimes and theft crime. However population density affected negatively on assault crime. Lastly, the findings of this study are expected to provide meaningful ideas to make our cities safer with U-City strategies and services.

  • PDF

Analysis of Spatial Characteristics of Vacant House in Consideration of the Modifiable Areal Unit Problem (MAUP) - Focused on the Old Downtowns of Busan Metropolitan City - (공간단위 수정가능성 문제(MAUP)를 고려한 빈집 발생지역의 특성 분석 - 부산광역시 원도심 일대를 대상으로 -)

  • SEOL, Yu-Jeong;KIM, Ji-Yun;KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.120-132
    • /
    • 2022
  • Recently, the rapid increase in vacant houses in urban areas has caused various problems such as worsening urban landscape, causing safety accidents, crime accidents, and hygiene problems. According to the Statistics Korea Future Population Estimation results, the growth rate of Korean population and households is expected to continue to decrease, which is likely to lead to an increase in the occurrence of vacant houses. If the problem caused by the occurrence of vacant houses is neglected, it causes not only a physical decline such as a deterioration of the residential environment but also a social and economic decline. In order to solve this problem, it is necessary to grasp the spatial distribution characteristics of vacant houses at the local level considering the existence of regional characteristics and spatial influence. Therefore, in this study, in order to measure global spatial autocorrelation, the analysis was conducted centering on the old downtown area of Busan, where there are many vacant houses through Moran's I and Geographically Weighted Regression(GWR). In addition, the distribution of vacant houses in different spatial units in Eup_Myeon_Dong and Census was analyzed to evaluate the possibility of Modifiable Areal Unit Problem(MAUP), which differ in the results of spatial analysis as the spatial analysis units change. As a result of the analysis, the occurrence of vacant houses by Eup_Myeon_Dong in the old downtown area of Busan had spatial heterogeneity, and the spatial analysis results of vacant houses were different as the spatial analysis units were different. Accordingly, in order to understand the exact distribution characteristics of vacant house occurrence, spatial dimensions using the GWR model should be considered, and it is suggested that consideration of the MAUP is necessary.