• 제목/요약/키워드: 공간랜덤포레스트

검색결과 44건 처리시간 0.02초

실외공기측정기 자료를 이용한 도심 기상 예측 기계학습 모형 비교 (Comparison of Machine Learning Techniques in Urban Weather Prediction using Air Quality Sensor Data)

  • 박종찬;박헌진
    • 한국빅데이터학회지
    • /
    • 제6권2호
    • /
    • pp.39-49
    • /
    • 2021
  • 최근 국가 관측망, 기업 공기 측정기 등을 통해 많고 다양한 기상 데이터가 수집되고 있다. 기계학습 기법을 통해 기상 예측하려는 노력이 곳곳에서 이루어지고 있으며, 국내 미세먼지는 농도가 증가해오고 사람들의 관심이 높아 가장 관심있는 예측 대상 중 하나이다. 본 연구에서는 서울시 전역에 설치된 840여 개실외공기측정기 데이터를 사용하여 PM10·PM2.5 예측 모형을 비교하고자 한다. 5분 뒤 미세먼지 농도 예측을 통해 실시간으로 정보를 제공할 수 있으며, 이는 10분·30분·1시간 뒤 예측 모형 개발에 기반이 될 수 있다. 잡음 제거, 결측치 대체 등의 데이터 전처리를 진행하였고, 시·공간 변수를 고려할 수 있는 파생 변수를 생성하였다. 모형의 매개변수는 반응 표면 방법을 통해 선택하였다. XGBoost, 랜덤포레스트, 딥러닝(Multilayer Perceptron)을 예측 모형으로 사용하여, 미세먼지 농도와 예측값의 차이를 확인하고, 모형 간 성능을 비교하고자 한다.

GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique)

  • 엥흐자리갈 운자야;박수호;황도현;정민지;김나경;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1089-1098
    • /
    • 2020
  • 본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.

머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구 (A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning)

  • 조재혁;김성수
    • 지적과 국토정보
    • /
    • 제51권2호
    • /
    • pp.83-106
    • /
    • 2021
  • 대기오염, 지구온난화 문제 등 환경 문제의 심각성이 대두되면서 청정 연료의 관심이 커지고 있다. 그 중 수소는 기존 화석연료와는 달리 연소 시 부산물로 수분만이 발생하는 대표적인 친환경 에너지원으로 현재 다양한 분야에서 주목을 받고 있다. 물류 분야에서도 수소를 활용한 물류 네트워크를 구축하기 위해 다양한 정책적 노력이 활발히 이루어지고 있다. 이러한 수소 물류 네트워크의 구축에 있어 수소충전소의 입지 결정은 매우 중요한 문제이다. 최근 개발된 수소추진(수소연료전지) 화물차에 수소를 공급하는 충전소는 수소 기반 물류체계가 본격적으로 자리 잡는 데 있어 필수 불가결한 요소이다. 이러한 수소충전소의 최적 입지를 결정하는 선행연구는 대부분 수리적 모형에 기반한 최적화 기법만을 사용하여 수소충전소의 최적 입지를 결정하고자 하였다. 본 연구에서는 기존 연구의 동향과는 차별화하여 최적화 기법의 중요한 투입 변수 중 하나인 충전소 후보지에 대한 공간적 특성을 검토하는 방법으로 머신러닝 모형들을 활용하고 그 적용가능성을 확인하였다. 머신러닝은 다양한 분야에서 우수한 성과를 증명한 기법이지만 수소충전소의 최적 입지를 결정하는 연구 분야에서는 아직 적용된 바가 없다. 이를 위해 본 연구에서는 개별공시지가, 수소공급지와의 거리 등 전국 고속도로 휴게소와 고속도로의 무작위 지점들의 위치와 관련된 변수들을 독립변수로 선정하여 단일 머신러닝 모형과 앙상블 모형을 적용하고 그 성과를 비교하였다. 분석 결과, 랜덤포레스트(Random Forest) 모형이 가장 우수한 성과를 보였으며, 다른 모형들 또한 우수한 분류 성능을 보여 최적 입지 문제에 대해 공간적 특성을 예비적으로 검토하는 방법론으로써 머신러닝의 적용 가능성을 확인할 수 있었다. 따라서 머신러닝 모형은 수소충전소의 최적 입지 결정 분야에서 향후 최적화 기법을 적용한 연구의 예비적 검토 방법론으로 널리 활용할 수 있을 것으로 기대된다.

머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구 (A study on EPB shield TBM face pressure prediction using machine learning algorithms)

  • 권기범;최항석;오주영;김동구
    • 한국터널지하공간학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-230
    • /
    • 2022
  • 쉴드TBM (Tunnel Boring Machine) 터널 시공에 있어 막장압 관리는 막장면 붕괴, 지반침하 등을 방지하여 막장 안정성을 유지하는 데 중요한 역할을 담당한다. 특히, 챔버 내부의 굴착토로 막장압을 조절하는 토압식 쉴드TBM의 경우, 이수식 쉴드TBM에 비해 막장압의 관리가 어렵다. 본 연구에서는 국내 토압식 쉴드TBM 터널 시공 현장의 지반조건 및 굴진특성 데이터를 분석하여, 토압식 쉴드TBM 터널의 세그먼트 링별 막장압 예측모델을 제시하였다. 예측모델의 입력특성으로 7가지를 선정하였으며, 912개의 학습 데이터 세트(Training data set)와 228개의 시험 데이터 세트(Test data set)를 확보하였다. 최적의 토압식 쉴드TBM 막장압 예측모델 선정을 위하여 KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), XGB (eXtreme Gradient Boosting) 모델의 하이퍼파라미터(Hyperparameter)를 최적화하여 예측성능을 비교한 결과, RF 모델이 7.35 kPa의 평균 제곱근 오차(Root Mean Square Error, RMSE)로 가장 우수한 성능을 나타냈다. 추가적으로, RF 모델의 특성 중요도(Feature importance) 분석을 수행한 결과, 입력특성 중 수압의 영향도가 0.38로 가장 높았으며, 전반적으로 지반조건이 굴진특성보다 높은 중요도를 보여주었다.

기계학습을 활용한 주택매도 결정요인 분석 및 예측모델 구축 (Using Mechanical Learning Analysis of Determinants of Housing Sales and Establishment of Forecasting Model)

  • 김은미;김상봉;조은서
    • 지적과 국토정보
    • /
    • 제50권1호
    • /
    • pp.181-200
    • /
    • 2020
  • 본 연구는 OLS모형을 적용하여 주택보유기간에 영향을 미치는 결정요인을 추정한 후 SVM, Decision Tree, Random Forest, Gradient Boosting, XGBoost, LightGBM을 통해 각 모형별 예측력을 비교하였다. 예측력이 가장 높은 모델을 기반모델 삼아 앙상블 모형 중 하나인 Stacking모형을 적용하여 더욱 예측력이 높은 모형을 구축하여 주택시장의 주택거래량을 파악할 수 있다는 점에 선행 연구와의 차이가 있다. OLS분석 결과 매도이익, 주택가격, 가구원 수, 거주주택형태(단독주택, 아파트)이 주택보유기간에 영향을 미치는 것으로 나타났으며, RMSE를 기준삼아 각 머신러닝 모형과 예측력 비교한 결과 머신러닝 모델의 예측력이 더 높은 것으로 나타났다. 이후, 영향을 미치는 변수로 데이터를 재구축한 후 각 머신러닝을 적용하여 예측력을 비교하였으며, 분석 결과 Random Forest의 예측력이 가장 우수한 것으로 나타났다. 또한 예측력이 가장 높은 Random Forest, Decision Tree, Gradient Boosting, XGBoost모형을 개별모형으로 적용하고, Linear, Ridge, Lasso모형을 메타모델로 하여 Stacking 모형을 구축하였다. 분석 결과, Ridge모형일 때 RMSE값이 0.5181으로 가장 낮게 나타나 예측력이 가장 높은 모델을 구축하였다.

농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석 (A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries)

  • 권수경;김경민;임중빈
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.291-304
    • /
    • 2021
  • 기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

GEMS 영상과 기계학습을 이용한 산불 연기 탐지 (Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning)

  • 정예민;김서연;김승연;유정아;이동원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.967-977
    • /
    • 2022
  • 산불의 발생과 강도는 기후 변화로 인하여 증가하고 있다. 산불 연기에 의한 배출가스 대기질과 온실 효과에 영향을 미치는 주요 원인 중 하나로 인식되고 있다. 산불 연기의 효과적인 탐지를 위해서는 위성 산출물과 기계학습의 활용이 필수적이다. 현재까지 산불 연기 탐지에 대한 연구는 구름 식별의 어려움 및 모호한 경계 기준 등으로 인한 어려움이 존재하였다. 본 연구는 우리나라 환경위성 센서인 Geostationary Environment Monitoring Spectrometer (GEMS)의 Level 1, Level 2 자료와 기계학습을 이용한 산불 연기 탐지를 목적으로 한다. 2022년 3월 강원도 산불을 사례로 선정하여 산불 연기 레이블 영상을 생성하고, 랜덤 포레스트 모델에 GEMS Level 1 및 Level 2 자료를 투입하여 연기 픽셀 분류 모델링을 수행하였다. 훈련된 모델에서 입력변수의 중요도는 Aerosol Optical Depth (AOD), 380 nm 및 340 nm의 복사휘도 차, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), 포름알데히드, 이산화질소, 380 nm 복사휘도, 340 nm 복사휘도의 순서로 나타났다. 또한 2,704개 픽셀에 대한 산불 연기 확률(0≤p≤1) 추정에서 Mean Bias Error (MBE)는 -0.002, Mean Absolute Error (MAE)는 0.026, Root Mean Square Error (RMSE)는 0.087, Correlation Coefficient (CC)는 0.981의 정확도를 보였다.

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지 (Wafer bin map failure pattern recognition using hierarchical clustering)

  • 정주원;정윤서
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.407-419
    • /
    • 2022
  • 반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석의 고유값과 2차 다항식의 결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.

기계학습 기반 상세화를 통한 위성 지표면온도와 환경부 토지피복도를 이용한 열환경 분석: 대구광역시를 중심으로 (Thermal Characteristics of Daegu using Land Cover Data and Satellite-derived Surface Temperature Downscaled Based on Machine Learning)

  • 유철희;임정호;박선영;조동진
    • 대한원격탐사학회지
    • /
    • 제33권6_2호
    • /
    • pp.1101-1118
    • /
    • 2017
  • 급격한 도시화와 이상기후의 증가로 도시의 기온이 꾸준히 올라가고 있으며, 한 도시 안에서도 열분포 양상이 지역마다 다르게 나타나고 있어 상세한 도시 열환경 분석이 요구된다. 최근에는 위성자료를 이용한 열환경 분석이 수행되고 있으나, 위성자료는 시 공간해상도의 Trade-off 관계로 인해 정밀한 분석에 어려움이 따른다. 이 연구는 2012년부터 2016년의 대구광역시 여름철 열환경 분석을 위해, MODIS(Moderate Resolution Imaging Spectroradiometer) 1 km 공간해상도의 낮과 밤 지표면온도(낮$LST_{1km}$, 밤$LST_{1km}$)를 250 m 공간해상도(낮$LST_{250m}$, 밤$LST_{250m}$)로 상세화 시켰다. 상세화에는 기계학습 기법인 랜덤 포레스트(Random Forest)가 이용되었다. 향상된 $LST_{250m}$는 기존의 $LST_{1km}$에 비해, 대구광역시 행정동 기준 불투수면적 비율과 지표면온도가 높은 상관관계를 보여주었다. 다음으로, 상세화 된 낮과 밤$LST_{250m}$를 이용하여 Hot Spot 분석을 수행하였다. 대구광역시 행정동 중 낮과 밤 지표면온도가 Hot Spot으로 군집화된 영역을 비교하고, 토지피복도를 이용하여 그 원인을 분석했다. 낮에는 공업 및 상업지역의 비율이 높은 영역에서, 밤의 경우 주거지역의 비율이 높은 영역에서 높은 Hot Spot이 군집 되었다. 본 연구의 열환경 분석 접근은 향후 도시정책 수립 및 국민안전에 큰 기여를 할 수 있을 것으로 기대된다.

KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발 (Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map)

  • 송지용;정종철;이상훈
    • 한국환경생태학회지
    • /
    • 제32권6호
    • /
    • pp.686-697
    • /
    • 2018
  • 오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.