In recent years, word embedding has been a popular field of natural language processing research and a skip-gram has become one successful word embedding method. It assigns a word embedding vector to each word using contexts, which provides an effective way to analyze text data. However, due to the limitation of vector space model, primary word embedding methods assume that every word only have a single meaning. As one faces multi-sense words, that is, words with more than one meaning, in reality, Neelakantan (2014) proposed a multi-sense skip-gram (MSSG) to find embedding vectors corresponding to the each senses of a multi-sense word using a clustering method. In this paper, we propose a modified method of the MSSG to improve statistical accuracy. Moreover, we propose a data-adaptive choice of the number of clusters, that is, the number of meanings for a multi-sense word. Some numerical evidence is given by conducting real data-based simulations.
The needs for visualizing interactive multimedia contents on portable devices with realistic three dimensional shapes are increasing as new ubiquitous services are coming into reality. Especially in digital fashion applications with virtual reality technologies for clothes of various forms on different avatars, it is required to provide very high quality visual models over mobile networks. Due to limited network bandwidths and memory spaces of portable devices, it is very difficult to transmit visual data effectively and render realistic appearance of three dimensional images. In this thesis, we propose a compression method to reduce three dimensional data for digital fashion applications. The three dimensional model includes animation of avatar which require very large amounts of data over time. Our proposed method utilizes temporal and spatial coherence of animation data, to reduce the amount. By grouping vertices from three dimensional models, the entire animation is represented by a movement path of a few representative vertices. The existing three dimensional model compression approaches can get benefits from the proposed method by reducing the compression sources through grouping. We expect that the proposed method to be applied not only to three dimensional garment animations but also to generic deformable objects.
Multidimensional scaling (MDS) is an exploratory analysis of multivariate data to represent the dissimilarity among objects in the geometric low-dimensional space. However, a general MDS map only shows the information of objects without any information about variables. In this study, we used MDS based on the algorithm of Torgerson (Theory and Methods of Scaling, Wiley, 1958) to visualize some clusters of objects in categorical data. For this, we convert given data into a multiple indicator matrix. Additionally, we added the information of levels for each categorical variable on the MDS map by applying the partition method of Shin et al. (Korean Journal of Applied Statistics, 28, 1171-1180, 2015). Therefore, we can find information on the similarity among objects as well as find associations among categorical variables using the proposed MDS map.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.4
/
pp.285-292
/
2013
This study proposes a network matching method based on a network division technique. The proposed method generates polygons surrounded by links of the original network dataset, and detects corresponding polygon group pairs using a intersection-based graph clustering. Then corresponding sub-network pairs are obtained from the polygon group pairs. To perform the geometric correction between them, the Iterative Closest Points algorithm is applied to the nodes of each corresponding sub-networks pair. Finally, Hausdorff distance analysis is applied to find link pairs of networks. To assess the feasibility of the algorithm, we apply it to the networks from the KTDB center and commercial CNS company. In the experiments, several Hausdorff distance thresholds from 3m to 18m with 3m intervals are tested and, finally, we can get the F-measure of 0.99 when using the threshold of 15m.
The Journal of Korean Institute of Communications and Information Sciences
/
v.23
no.8
/
pp.1998-2009
/
1998
An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.
Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.
This study was conducted from March to August 1997 to decide the size of plant community in fragmentary habitats. The thirty one sites and one hundred and eighteen plots were plotted in the areas including Yangpyong, Yoju, Pyongtaek and Ansong in Kyonggi-do, Chomchon and Sangju in Kyongsangbuk-do, Nonsan in Chungchongnam-do and Iksan in Chollapuk-do. The area and number of woody species by correlation analysis were recorded as the highest value as 0.716. In order to apply the theory of island biogeography to the fragmented habitats in Korea, the four variables were calculated by regression model. The four variables such as number of woody species, number of woody individuals, number of herbaceous species and number of herbaceous individuals were recorded as significant with area at the level of 0.05 and R square was 0.71. The one function was selected between number of species and number of individuals from the canonical correlation analysis, and the function square was 0.8876. Both canonical function and squared canonical correlation showed significant at the level of 0.01. The number of species and individuals were not increased from the condition that was the size of plant community of 400$m^2$, 30 for number of species and 4,000 for number of individuals. This results of this study can be widely used as a basic information for the conservation management, especially the fragmented ecosystems or the biotop creation in the landscaping.
In noisy and multi-speaker environments, the performance of speech recognition is unavoidably lower than in a clean environment. To improve speech recognition, in this paper, the signal of the speaker of interest is extracted from the mixed speech signals with multiple speakers. The VoiceFilter model is used to effectively separate overlapped speech signals. In this work, clustering by Probabilistic Linear Discriminant Analysis (PLDA) similarity score was employed to detect the speech signal of the interested speaker, which is used as the reference speaker to VoiceFilter-based separation. Therefore, by utilizing the speaker feature extracted from the detected speech by the proposed clustering method, this paper propose a speaker diarization system using only the mixed speech without an explicit reference speaker signal. We use phone-dataset consisting of two speakers to evaluate the performance of the speaker diarization system. Source to Distortion Ratio (SDR) of the operator (Rx) speech and customer speech (Tx) are 5.22 dB and -5.22 dB respectively before separation, and the results of the proposed separation system show 11.26 dB and 8.53 dB respectively.
본 논문에서는 새로운 HAC(Histogram Area Calculation)방법과 영상의 객체분할 방법을 소개한다. 히스토그램을 이용한 영상은 색상 공간의 특징 때문에 조명에 매우 민감하여 빛의 강도에 따라 유사성이 저하되는 경우가 있다. 또한 공간적 정보를 가지고 있지 않아, 전혀 다른 모양의 영상일지라도 칼라 분포가 같은 영상으로 볼 수 있다. 이 논문에서 제안한 방법은 히스토그램 영역을 임의의 영역으로 나눠, 영역들의 유사성을 매칭(matching) 시킨다. 2차 검색방법으로 원 영상에서의 색상 질감 정보가 동일한 영역을 군집화 하여, 영상 분할된 객체들을 이용하여 검색하는 방법이다. 실험 결과, 제안한 방법이 전통적인 히스토그램 방법보다 검색 성능이 효율적인 결과를 얻었다.
Kang Juyoung;Lee Bongjae;Song Jaeju;Shin Jinho;Yong Hwanseung
Annual Conference of KIPS
/
2004.11a
/
pp.105-108
/
2004
데이터 양이 급증함에 따라 축적된 데이터로부터 의미있는 지식을 추출해 내고자 하는 데이터 마이닝에 대한 연구가 활발하게 진행되어 왔다. 특히 최근, 환경이 이동 분산화 되어감에 따라 감시${\cdot}$모니터링 시스템, 기상 관측 시스템, GPS 시스템과 같은 다양한 응용 시스템으로부터 방대한 양의 시공간 데이터가 발생하게 되었고, 이른 효율적으로 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 데이터 마이닝 기법의 경우 문자나 숫자 데이터를 대상으로 최적화 되어있기 때문에 시${\cdot}$공간 속성을 동시에 가지는 데이터를 분석하기에는 한계가 있는 것이 사실이다. 본 논문에서는 SOM(Self-Organizing Map)을 적용하여 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능 및 클러스터링 정확성을 다른 세 가지 군집분석 알고리즘과 비교, 분석하였다. 또한 가시화 모듈을 개발하여 입력 데이터의 특성과 결과를 더욱 정확하게 분석할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.