공간 데이타베이스 시스템에서 취급되는 여러 유형의 공간질의들 중 주어진 위치에서 가장 가까운 공간객체를 찾는 최근접질의는 매우 빈번히 발생한다. 최근접질의 성능을 높이기 위해서는 색인에서 검색되는 노드의 수를 최소화할 수 있어야 한다. 기존의 방법은 이차원 검색공간에서 최근접질의의 처리만을 고려하였으며, 검색되는 노드의 수를 정확히 줄이지 못하였다. 본 논문에서는 최적탐색거리를 제안하고 그 특성을 정리하였었다. 제안된 최적탐색거리는 최근접질의 처리시 검색될 노드들을 정확히 선정하기 위한 새로운 검색거리 측도이다. 우리는 최적탐색거리를 R-트리에 적용한 최근접질의 처리 알고리즘을 제안하고 기존의 방법에 비해 질의처리의 결과가 더 정확함을 증명하였다.
지리정보시스템과 같이 방대한 양의 공간데이터를 다루는 응용시스템에서 공간데이터베이스로부터 규칙적인 특성이나, 혹은 관심 있는 지식을 추출해내는 공간데이터마이닝의 역할은 매우 중요하다. 이를 위해 지금까지 이루어진 방법들에는 여러 가지가 있지만 그 중에서 대표적인 방법이 클러스터링으로 이는 단지 기하학적인 거리에 기반을 둔 공간적인 집중성과 분포도를 찾는 데에만 한정되어 있다. 그러나, 공간데이터마이닝을 위해서는 공간클러스터가 형성된 원인을 분석하는 것 또한 필요하다. 따라서 본 연구에서는 공간 클러스터링에서 얻어진 결과를 다른 공간적인 객체와의 연관성을 분석하여 공간적 집중성과 분포도를 유발하는 원인을 찾는 방법을 다룬다. 우선 몇 가지의 거리를 정의하는 것에 의해 클러스터와 공간객체사이의 연관성을 분석하는 방법을 제시하고, 생성된 공간 클러스터가 다수의 공간객체에 영향을 받을 경우, 그 공간 클러스터를 각각 단위클러스터로 분리하는 방법을 제시한다.
인간이 인지하는 디스플레이 화질은 디스플레이 및 시각계의 시간적·공간적 특성에 의해 결정되어진다고 한다. 이때, 시각계의 공간 특성은 공간적 콘트라스트 감도 함수(Spatial Contrast Sensitivity Function, 공간적 CSF, 이하 CSF로 표기)로 나타낼 수 있다. 일반적으로 디스플레이를 이용한 휘도 격자의 CSF는 휘도 및 시청 거리(디스플레이와 피험자간 거리)에 의한 영향을 받는다. 본 논문의 목적은 이러한 CSF의 기본 특성에 대해 검토하고, 향후 이를 디스플레이의 화질평가 척도에 이용하는 것에 있다. (중략)
본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 영상의 픽셀들을 이웃관계를 유지하여 칼라공간으로 매핑한다. 칼라공간상에서 이웃하는 픽셀들을 클러스터링하여 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 클러스터링(gravitational clustering)을 사용하였다. 이 방법으로 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. gravitational 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.
거리조인은 R-트리를 사용하여 두 공간 데이터 집합 사이의 데이터쌍을 거리 상 가까운 순으로 검색하는 공간조인이다. 거리조인은 R-트리를 하향식으로 순회하면서 생성되는 노드쌍들을 거리값 순으로 우선순위 큐에 저장한다. 본 논문에서는 거리조인 처리시 우선순위 큐 안에서 동점자 노드쌍들의 우선 순위 정책이 알고리즘의 성능을 많이 좌우할 수 있음을 보여주고, 이를 위한 최적화된 2차 우선 순위 기법을 제안한다. 실험을 통하여, 제안한 기법이 다른 기법에 비하여 항상 좋은 성능을 나타냄을 보여준다.
최근의 기업중심의 서비스를 위해서 리버스 스카이라인 질의 처리가 연구되었다. 하지만 지금까지의 리버스 스카이라인에 대한 연구는 모두 다이나믹 스카이라인을 기반으로 한 리버스 다이나믹 스카이라인이고, 위치 기반 서비스를 위한 거리공간에서의 리버스 스카이라인 질의 처리 기법은 전무하다. 따라서 본 논문에서는 일반적인 스카이라인에 적용 가능하고 거리공간을 고려한 리버스 스카이라인 처리 기법을 제안한다. 제안하는 기법은 기존의 공간 색인을 활용하여 거리공간에서 리버스 스카이라인을 처리하며, 객체의 단색적인 환경과 양색적인 환경을 모두 고려한다. 제안하는 기법의 우수성을 보이기 위해 제안하는 기법과 기본적인 리버스 스카이라인 질의 처리 기법과의 성능평가를 수행하고 그 결과를 비교 분석했다. 그 결과 기존의 기법보다 약 5000배 우수한 성능을 보였다.
개인적 거리는 동시대 도시민들의 개인적 공간과 영역성, 사회심리적 수용력에 영향을 미치는 환경심리학의 기초개념 중 하나이다. 따라서 본 연구는 대표 조경공간 중 하나인 도시공원을 대상으로, 국내 최초로 벤치이용자들의 이용행태 및 개인적 거리를 분석하고자 한다. 이를 위해 본 연구는 여의도 공원의 벤치 이용자들을 대상으로 Blind observation과 Pictorial analysis를 도입하여 연구를 진행하였다. 주요 연구결과, 남성과 여성그룹의 경우 평균 개인적 거리가 47.5cm로 가장 짧았고, 여성 집단의 경우 53.2cm, 남성집단의 경우 70.3cm로 나타났다. 이러한 연구결과는 이전 서양인들을 대상으로 한 개인적 거리 연구들을 대부분 지지하지만, 일부의 경우 한국인이 개인적 공간과 영역성이 더 좁을 수 있음을 시사한다.
본 연구에서는 시.공 복합적인 선형 점 자료를 대상으로 시간과 공간을 함께 고려했을 때 자료 내에 군집(cluster)-시.공 복합 군집(space-time cluster)-이 존재하는 가를 검증하는 방법에 대해 논의하고, 실제 교통사고지점의 분포자료를 분석하여 군집의 유무를 통계적으로 검증하였다. 통계 분석의 결과 다음과 같은 사실이 확인되었다. 첫째, Knox의 분할표 방법과 Mantel의 역수 변환을 이용한 일반화된 회귀분석방법 모두 임계 거리 및 임계 시간 간격의 선택이 분석결과에 영향을 미친다. 둘째, 이러한 임의성을 극복하기 위해 다양한 임계 거리 및 임계 시간 간격(혹은 부가 상수)에 대해 반복 실험한 결과, 일부 임계값의 조합에서 시간과 공간이 서로 독립적이라는 귀무가설을 기각할 수 있는 증거가 발견되었다. 셋째, 시.공 복합 군집의 파악에 가장 적합한 임계 거리와 임계 시간 간격은 공간적으로는 7000m, 시간적으로는 14일 혹은 21일이다. 마지막으로, 통계 분석과정에서 자료에 존재하는 중복 기록 사고들의 존재가 밝혀짐으로써 시.공 복합군집 검증이 탐험적 자료 분석(exploratory data analysis)의 도구로서 가지는 가치를 확인할 수 있었다.
대용량의 공간 데이터베이스로부터 임시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이터양의 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이타 마이닝에서 데이터를 분석하여 유사한 그룹으로 분류하는 것은 중요한 분야이며, 이를 위해서는 공간 클러스터링 과정이 먼저 수행되어야 한다. 이러한 공간 클러스터링에서 가장 중요한 점은 클러스터링에 드는 비용의 감소와 점 공간객체에 한정된 클러스터링이 아닌 선 및 다각형 객체들의 클러스터링도 가능해야 한다. 본 본문은 이를 위하여 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 이용한다. 기존의 클러스터링에서 사용되는 객체들 간의 거리 계산을 인접한 그리드 셀들 간의 관계 연산으로 대체시키는 것이 핵심아이디어이다. 이 방법은 기존 클러스터링에서 객체들 간의 거리 계산으로 인한 비용을 현저하게 줄일 수 있고, 선 및 다각형 객체들의 클러스터링도 가능하게 하는 장점이 있다.
문제 인스턴스 탐색 혹은 자동 생성은 알고리즘 분석 및 테스트에 적용될 수 있으며, 하드웨어, 소프트웨어 프로그램, 계산 이론 등 다양한 수준에서 연구되어온 주제이다. 본 연구에서는 해(解) 공간에 사용된 목적값-거리 상관관계 분석을 문제 인스턴스 공간에 적용하였다. 문제 인스턴스의 목적값은 문제에 따라 알고리즘의 수행 시간과 최적해를 잘 구하는 정도로 정의하였다. 이러한 정의는 문제 인스턴스의 난이도로 해석할 수 있다. 상관관계는 3가지 측면에서 분석하였다: 첫째, 알고리즘과 거리 함수에 따른 상관관계 차이, 둘째, 알고리즘의 개선 전/후의 상관관계 변화, 셋째, 문제 인스턴스 공간과 해당 문제의 해 공간 사이의 연관성. 본 논문은 문제 인스턴스 공간에 상관계수 분석이 어떻게 적용될 수 있는지 보여주며, 문제 인스턴스 공간 분석을 본격적으로 다루는 첫번째 시도이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.