• Title/Summary/Keyword: 공간가중회귀모형

Search Result 45, Processing Time 0.032 seconds

Estimation of Spatio-temporal soil moisture and drought index based on MODIS multi-satellite images (MODIS 다중 위성영상 기반의 토양수분 및 가뭄지수 산정연구)

  • Chung, Jeehun;Kim, Juyeon;Kim, Hyeongseok;Jeong, Daeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.446-446
    • /
    • 2022
  • 본 연구에서는 MODIS(MODerate resolution Imaging Spectroradiometer) 다중 위성영상을 기반으로 전국 시공간 토양수분 및 토양수분 기반의 가뭄지수 SWDI(Soil Water Deficit Index)를 산정하였다. 시공간 토양수분의 산정을 위해 입력자료로 MODIS 위성의 지표면온도(Land Surface Temperature, LST), 증발산 및 식생(Enhanced Vegetation Index, EVI; Fraction of Photosynthetically Active Radiation, FPAR; Leaf Area Index, LAI; Normalized Difference Vegetation Index, NDVI) 관련 산출물 자료와 지상 관측자료인 일 단위 강수량 자료를 구축하였다. MODIS 위성영상은 산출물별로 제공되는 QC(Quality Control) 영상을 활용해 보정을 수행하였고, 공간 강수량 자료는 기상청에서 제공하는 전국 92개 지점의 종관기상관측자료를 구축하여 공간보간기법인 역거리가중법을 적용해 생성하였다. 실측 토양수분은 농촌진흥청에서 제공하는 76개 지점의 토양 깊이 10 cm에 설치된 TDR(Time Domain Reflectomerty) 센서에서 측정된 토양수분 자료를 활용하였으며, 토양수분 모의 시 토양 속성을 고려하기 위해 국립농업과학원에서 제공하는 토양도를 구축하여 활용하였다. 토양수분 산정 모형은 다중선형회귀모형(Multiple Linear Regression Model, MLRM)을 활용하였으며, 계절 및 토성에 따른 회귀식을 산정하였다. 회귀식 기반의 토양수분과 토성별 포장용수량 및 영구위조점 값을 이용하여 SWDI를 산정하고, 실제 가뭄 발생 시기 및 지역과의 비교하고자 한다.

  • PDF

An Analysis of the Effects of Customer Characteristics on Sales of Alley Market Area Using Geographically Weighted Regression (지리가중회귀분석을 이용한 고객특성별 골목상권 매출액 영향 연구)

  • Kang, Hyun Mo;Lee, Sang-Kyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.611-620
    • /
    • 2018
  • With the revitalization of alley market area becoming a major goal of the urban regeneration project, an understanding on customer characteristics that affect the sales of alley market areas is needed. As spatial heterogeneity appears to exist in alley market areas, the use of GWR (Geographically Weighted Regression) is required as an alternative to OLS (Ordinary Least Squares) regression. This study analyzes effects of customer characteristics on sales of 1007 alley market areas in Seoul. Comparing R squared and AICc, results show that GWR is better than OLS regression. According to OLS regression, the ratio of female, the ratio of 40's and 50's, the number of employees, the opening rate of establishment, the density of building and the size of alley market area have positive effects on sales, while the ratio of 20's and 30's, the distance of bus stop and that of subway station have negative effects. As a result of comparing local regression coefficients of geographically weighted regression analysis, the ratio of female customers has the greatest effect on the northwestern region, followed by the southwestern region, the central region and the northeastern region. The ratio of 20's and 30's and that of 40's and 50's effect on the southeastern and northeastern regions, and then the southwestern region. It is expected that this study will help to identify marketing target for each alley market area.

A Study on the Inter-Model Comparison and Influencing Factors on the Use Predictive Power of Shared E-scooter (공유 전동킥보드 이용 예측력에 대한 모형 및 영향요인에 관한 연구)

  • Daewon Kim;Dongmin Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.29-47
    • /
    • 2024
  • Many domestic and foreign studies derive factors that significantly affect the use of shared E-scooters based on performance data, but few studies have been conducted with comparative analysis models using predictive power, applying them to other regions. Therefore, by clearly establishing detailed influencing factors and scope in Gwangjin-gu and Gangnam-gu by using domestic shared E-scooter performance data, this study enhances predictive power, and the Geographically Weighted Regression model is derived through spatial autocorrelation verification. Based on the results, the direction of a construction model created from regional differences was presented, and major implications from the user's perspective are derived based on the difference between actual use and the model's prediction.

An Empirical Study on the Spatial Effect of Distribution Patterns between Small Business and Social-environmental factors (소상공인 점포의 분포와 환경요인의 공간적 영향관계에 관한 실증연구)

  • YOO, Mu-Sang;CHOI, Don-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.

A Spatial Interpolation Model for Daily Minimum Temperature over Mountainous Regions (산악지대의 일 최저기온 공간내삽모형)

  • Yun Jin-Il;Choi Jae-Yeon;Yoon Young-Kwan;Chung Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.175-182
    • /
    • 2000
  • Spatial interpolation of daily temperature forecasts and observations issued by public weather services is frequently required to make them applicable to agricultural activities and modeling tasks. In contrast to the long term averages like monthly normals, terrain effects are not considered in most spatial interpolations for short term temperatures. This may cause erroneous results in mountainous regions where the observation network hardly covers full features of the complicated terrain. We developed a spatial interpolation model for daily minimum temperature which combines inverse distance squared weighting and elevation difference correction. This model uses a time dependent function for 'mountain slope lapse rate', which can be derived from regression analyses of the station observations with respect to the geographical and topographical features of the surroundings including the station elevation. We applied this model to interpolation of daily minimum temperature over the mountainous Korean Peninsula using 63 standard weather station data. For the first step, a primitive temperature surface was interpolated by inverse distance squared weighting of the 63 point data. Next, a virtual elevation surface was reconstructed by spatially interpolating the 63 station elevation data and subtracted from the elevation surface of a digital elevation model with 1 km grid spacing to obtain the elevation difference at each grid cell. Final estimates of daily minimum temperature at all the grid cells were obtained by applying the calculated daily lapse rate to the elevation difference and adjusting the inverse distance weighted estimates. Independent, measured data sets from 267 automated weather station locations were used to calculate the estimation errors on 12 dates, randomly selected one for each month in 1999. Analysis of 3 terms of estimation errors (mean error, mean absolute error, and root mean squared error) indicates a substantial improvement over the inverse distance squared weighting.

  • PDF

Impact of Fertilizer Subsidy Program on Agricultural Productivity in Ghana (가나 비료 보조금 제도의 농업 생산성 증대 효과에 대한 공간적 분석)

  • KUGBADZOR, James;JEONG, Jaewon;KIM, Seung Gyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2017
  • 본 연구는 가나의 비료 보조금 정책(Fertilizer subsidy program: FSP)의 농업 생산성에 대한 영향을 분석하였다. 가나의 군(district) 지역 수준의 농업 생산량 및 투입요소에 대한 자료를 사용하여, FSP 도입 이전과 FSP 도입 이후의 농업 생산성을 계측하였다. 지역적으로 상이한 수준의 농업 생산성을 반영하기 위한 지리적가중회귀(GWR)모형을 사용하여 계측의 오류를 줄이고 공간이질성을 고려하였다. 추정 결과를 바탕으로 ArcMap을 이용하여 생산성을 지도로 시각화 한 자료를 살펴보면, FSP 도입 이후 농업 생산성이 전반적으로 개선되었으며 그 중에서도 생산성이 크게 향상된 지역을 특정할 수 있다. 이러한 공간적 변화는 FSP의 지역적 할당의 효율성 증진을 위한 의사결정 자료로 이용 가능하며, 국내 ODA 추진기관에서 농업 지도 및 지원을 위해 유용한 정보로 사용할 수 있다.

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

Applicability of Missing Rainfall Data Estimation using Artificial Neural Networks (신경망 모형을 이용한 결측 강우 자료 추정방법의 적용성 연구)

  • Cho, Herin;Park, Hee-Seong;Kim, Hyoungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.512-512
    • /
    • 2015
  • 시 공간적 관측에서 다양한 원인에 의해 강우 자료에 결측이나 오측이 발생할 수 있다. 강우를 측정하고 자료를 수집 관리하는 측면에서 결측 되거나 오측된 자료를 추정 보완할 필요가 있다. 현재까지 결측 강우 자료를 추정하기 위한 방법으로 결측 지점 인근의 관측소를 이용한 단순 가중 평균치 방법에서부터 복잡한 통계적 기반의 보간 방법에 이르기까지 많은 연구들이 진행되고있다. 본 연구에서는 결측 된 강우 자료를 추정하기 위해 인공 신경망을 이용하여 모형을 구축하고 주변 관측소의 강우자료를 이용해 신경망 학습을 실시하여 적용해 보았으며, 최근 관측의 단위가 짧아지고 있는 점을 고려하여 10분, 30분, 1시간 등 다양한 시간간격의 강우자료를 구축하고 선형회귀모형과 RDS 방법, 신경망 모형을 이용한 방법 등을 적용한 결과를 비교하여 신경망 모형의 적용성을 살펴보았다. 단순한 구조면에서는 기존의 RDS 방법에 대한 적용성이 높은 것으로 판단되었으나, 성능의 개선을 위한 별다른 방법이 없는 반면 신경망 모형은 입력 자료를 다양하게 변환하여 구성하는 경우 성능을 개선하여 적용성이 더 높아 질 수 있는 것으로 판단되었다. 향후 신경망 모형을 이용해 잘못 측정된 강우를 적절히 선별하고 결측된 보완함으로써 관측된 강우 자료의 활용성을 높일 수 있을 것이다.

  • PDF

The Spatial Statistical Relationships between Road-traffic Noise and Urban Components Including Population, Building, Road-traffic and Land-use (공간통계모형을 이용한 도로 소음과 도시 구성 요소의 관계 연구)

  • Ryu, Hunjae;Park, In Kwon;Chang, Seo Il;Chun, Bum Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2014
  • To understand the relationship between road-traffic noise and urban components such as population, building, road-traffic and land-use, the city of Cheongju that already has road-traffic noise maps of daytime and nighttime was selected for this study. The whole area of the city is divided into square cells of a uniform size and for each cell, the urban components are estimated. A spatial representative noise level for each cell is determined by averaging out population-weighted facade noise levels for noise exposure population within the cell during nighttime. The relationship between the representative noise level and the urban components is statistically modeled at the cell level. Specially, we introduce a spatial auto regressive model and a spatial error model that turns out to explain above 85 % of the noise level. These findings and modeling methods can be used as a preliminary tool for environmental planning and urban design in modern cities in consideration of noise exposure.

Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model (기계학습모형을 이용한 다분광 위성 영상 기반 낙동강 부유 물질 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won;Beak, Donghae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • Suspended Solids (SS) generated in rivers are mainly introduced from non-point pollutants or appear naturally in the water body, and are an important water quality factor that may cause long-term water pollution by being deposited. However, the conventional method of measuring the concentration of suspended solids is labor-intensive, and it is difficult to obtain a vast amount of data via point measurement. Therefore, in this study, a model for measuring the concentration of suspended solids based on remote sensing in the Nakdong River was developed using Sentinel-2 data that provides high-resolution multi-spectral satellite images. The proposed model considers the spectral bands and band ratios of various wavelength bands using a machine learning model, Support Vector Regression (SVR), to overcome the limitation of the existing remote sensing-based regression equations. The optimal combination of variables was derived using the Recursive Feature Elimination (RFE) and weight coefficients for each variable of SVR. The results show that the 705nm band belonging to the red-edge wavelength band was estimated as the most important spectral band, and the proposed SVR model produced the most accurate measurement compared with the previous regression equations. By using the RFE, the SVR model developed in this study reduces the variable dependence compared to the existing regression equations based on the single spectral band or band ratio and provides more accurate prediction of spatial distribution of suspended solids concentration.