• Title/Summary/Keyword: 골프공

Search Result 90, Processing Time 0.037 seconds

Modal Analysis of the Soft Golf Club Prototype (소프트 골프클럽 시제품의 모드해석)

  • Kim S.M.;Sim K.J.;Kim Y.K.;Kwon Tae-Kyu;Kim Nam-Gyun;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2011-2014
    • /
    • 2005
  • The purpose of this study is to compare the modal parameters of a newly developed soft golf club prototype, which is designed to be lighter than regular golf clubs, with those of a regular commercial golf club. The modal tests were performed with two kinds of boundary conditions. The first condition was free-free condition and the second was fixed-free condition. An impact hammer and a Fast Fourier Transform analyzer were used to obtain modal data. From the results, it was found out that the modal characteristics of the soft golf club prototype were close to those of the regular golf club although the weight of the soft club was lighter. Therefore, the soft golf club is expected to be able to convey similar feel to the golfers even with lighter weight. This would enable elderly golfers to swing easily with the soft golf club with same skill which they acquired with regular golf clubs but with reduced load to their muscles.

  • PDF

Stress Analysis of the Soft Golf Clubs using FEM (소프트골프 클럽의 유한요소 모델 응력해석)

  • Kim Y.K.;Kim S.M.;Sim K.J.;Kwon T.K.;Kim N.G.;Lee S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2028-2031
    • /
    • 2005
  • This paper concerns stress distribution of the soft golf clubs using FEM. The identification of the stress distribution of the soft golf clubs used the finite element method using ABAQUS. The soft golf clubs which were designated is a new golf clubs to keep a good health for the elderly. To design the soft golf clubs, we concerns two main purpose ; First, our efforts concentrate to reduce the weight of the soft golf clubs. We considers the change of material and geometry of the golf club‘s head and shaft. Second, it is to increase the size and shape of 'sweet spot' of the soft golf club’s head face. To accomplish this purpose, we made the various type of the soft golf club's head. In this paper, we simulates putter models of the soft golf clubs. The pre-processing which generates the mesh of the model used HyperMesh with geometry data by CATIA ver 5.0 This paper compares the stress distribution of putter type which was loaded.

  • PDF

Biomechanical Analysis of Soft Golf Swing (소프트 골프 스윙의 생체역학적 해석)

  • Kim Y.Y.;Kim S.H.;Kwon T.K.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.643-644
    • /
    • 2006
  • The purpose of this study is to experimentally analyze swing motion with soft golf clubs and compare with that with normal golf clubs. Soft golf is newly devised recreational sport based on golf but focus on the playability for the elderly. The subject fur the experiment performed swing motion using a normal golf club and a soft golf club in turn. The swing motion of the subjects was tracked using an opto-electric three-dimensional motion analysis system. The results were compared against those obtained with a normal golf club. The range of motion was analyzed along with top head speed for two cases. It was found that higher club head speed could be achieved with reduced range of motion at lumbar joint using soft golf club when compared against the swing using regular club. The lower range of motion fur lumbar bending means reduced risk of injury at the joint. So, it is projected that we can reduce the risk of injury with soft golf while maintaining the club head speed.

  • PDF

Analysis of Muscular Activity for the Swing Motion Using Soft Golf (소프트 골프를 이용한 스웡 시 근육 사용도 분석)

  • Kim K.;Kim Y.Y.;No B.H.;Kwon T.K.;Hong C.U.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.522-525
    • /
    • 2005
  • The purpose of this study was to analyze the pattern of muscle usage during swing motion with a soft golf club in comparison with that with a normal golf club. The subjects were normal healthy young adults. The subjects performed swing motion using normal and soft golf clubs in turn. Then, we compared and analyzed the muscular activities for the two cases. The muscular activities of the subject was measured using MP100(BIOPAC Systems, Inc.). For the analysis of muscular activities, we measured EMG(Electromyography) of the subjects during swing motion. The muscles analyzed were deltoid, latissimus dorsi, external oblique, and rectus abdominis of the upper limbs and rectus femoris, biceps femoris, gastrocnemius, and soleus of the lower limbs. The result of the experiment showed that the pattern of muscle usage with soft golf club was similar to that with a normal golf club but the muscular activities with the soft golf was smaller than that with the normal golf club.

  • PDF

Development of Standard Golf Swing Motion Modeling System (골프 표준 스윙 자세 구현 시스템 개발)

  • 이지홍;조복기;김기웅;심형원;유병욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.121-124
    • /
    • 2002
  • This paper explains the system which finds the data of the joint of Wire Frame(that express the body structure of the golfer) from standard golf swing movie. Also, this paper used interpolation and the method which modify the distance between a joint and a close joint to general new joint data. Last this paper explains the system that make a standard golf swing attitude by continuous display the static attitude(which are formed with Wire Frame) of golf swing operations.

  • PDF

A Prediction of Environmental Noise near Indoor Golf Driving Range (골프 연습장 환경 소음 예측)

  • 이성호;류국현;박상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.892-896
    • /
    • 2001
  • Recently, many indoor driving ranges are being built near residential areas because golf is one of the popular sports. Consequently, environmental noise occurs in the residential areas. This study is to predict the noise near the indoor golf driving range by the computer simulation(commercial software Raynoise 3.0) for various cases of noise control methods.

  • PDF

Kinetic Analysis of Golf Fat Shot (골프 Fat shot에 대한 운동역학적 분석)

  • Sohn, Jee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.523-532
    • /
    • 2013
  • When the golf club hits the ground prior to making contact with the golf ball, we define it as 'fat shot'. The aim of this research was to investigate the difference between normal shot and fat shot in golf. Five candidates playing as recreational golfer participated in this research and they were all right-handed people. Time phase between each event, wrist cocking angle, elbow extension-flexion angle, backswing height, pelvis angle, thorax angle, L-GRF, R-GRF, pelvis linear velocity, pelvis angular velocity and COG path were calculated. For statistical analysis the paired T-test was used. An early un-cocking, an early right elbow extension and impact with leaving their weight behind foot were not reasons of fat shot. Backswing height, X-Factor, pelvis angle and thorax rotation angle were not different between normal shot and fat shot. But we could find a pattern of abrupt pelvic movement and weight shift to target direction just before impact in case of fat shot. In addition fat shot showed time-delayed and small value of pelvis linear velocity pattern to upward during downswing phase as against normal shot.