• Title/Summary/Keyword: 골재입도

Search Result 232, Processing Time 0.03 seconds

A Study on Aggregate Gradation of 10 mm Dense-graded Asphalt Mixture using Slag Aggregate (슬래그 골재를 사용한 10 mm 밀입도 아스팔트 혼합물의 골재입도 기준 연구)

  • Jo, Shin Haeng;Kim, Kyungnam;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1367-1375
    • /
    • 2015
  • The purpose of this paper is to suggest 10 mm aggregate specification for thin layer asphalt pavement using steel slag. Aggregate gradations of conventional dense-graded asphalt mixtures were made by fuller's model, whereas 10 mm dense-graded asphalt mixture was obtained tender mix due to close to the maximum density line. The proposed aggregate gradation specification was made to have enough VMA and well-interlocking refer to foreign standards. The correlation between the proposed aggregate gradation and the properties of mixtures were analyzed using Gradation Ratio (GR) and Compacted Aggregate Density (CAD). The CAD index has a high $R^2$ of 0.86-0.99 because the CAD index is able to reflect various aggregate properties. As the results of evaluation by CAD index the proposed aggregate gradation provides more reliable stability and VMA. The percent passing (%) of aggregate size smaller than 0.3 mm was limited 10% or more for improving crack resistance. This limitation increased for 15% of the asphalt mixture's toughness.

Effect of a Aggregate Moisture Content on Aggregate Gradation Analysis (비 절건상태 골재의 함수비가 골재입도분석 결과에 미치는 영향)

  • Kim, Nam-ho;Ji, Hyeong-jun;Yang, Hong-seok;Jeon, Sun-je
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.559-566
    • /
    • 2021
  • The aggregate gradation analysis is a study that evaluates the accuracy of a specific purpose for the aggregate gradation analysis results essential for construction-related major education. This study is to evaluate the effect of aggregate moisture content on aggregate gradation analysis. The change in the moisture content of the aggregate stored in the asphalt plant cold bin and stock piles was monitored for one year, and based on the results, a sample of aggregate with different moisture content was produced. The gradation curve for each aggregate sample was analyzed to evaluate the effect of aggregate moisture content on aggregate gradation analysis. As a result of the gradation evaluation, it was confirmed that as the moisture content increased, the particle size error for particles less than 5 mm increased in the gradation analysis of the oven-dried aggregate, and this error increased as the particle size decreased. In addition, for aggregate particles of 5 mm or more, it was confirmed that the error in gradation analysis rapidly decreased due to the increase in the moisture content. An analysis was performed on the effect of the error in gradation analysis on the management of hot-bin aggregates in asphalt plants. As a result of the analysis, it was found that the minimum aggregate size of the first hot-bin in a general asphalt plant was 2.38 mm or more, so the maximum gradation error due to the non oven-dry aggregate was less than 2%. Therefore, it seems possible to use the results of the gradation analysis of cold bin non oven-dry aggregate for quality management of asphalt mixture production.

Planting-Ability Valuation of Porous Concrete Using Industrial By-Products (산업부산물을 이용한 포러스콘크리트의 식생능력평가)

  • 박승범;이봉춘;김정환;윤덕열
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.623-629
    • /
    • 2002
  • Porous concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze void ratio, strength property and planting ability when using silica fume and fly ash, the change of aggregate gradation and ratio of paste to aggregate. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the ratio of paste to aggregate gets larger. The planting ability of porous concrete is decided by the germination and the grass length of perennial ryegrass. The grass length of perennial ryegrass is longer when the gradation of aggregate is greater and the ratio of paste to aggregate gets smaller. Therefore the efficiency of planting goes through the perennial ryegrass is in compliance with the void ratio, aggregate gradation.

The Effects of Aggregate Gradations and SBS Modifier on the Viscoelastic Properties and Fatigue Performance of Asphalt Mixtures (골재의 입도와 SBS 개질재가 아스팔트 혼합물의 점탄성 물성 및 피로 공용성에 미치는 영향)

  • Lee, Hyun-Jong;Choi, Ji-Young;Cha, Soon-Man
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-144
    • /
    • 2000
  • This paper presents the characteristics of viscoelastic properties and fatigue performance of SBS modified asphalt mixtures depending on the aggregate gradation. Dynamic shear rheometer (DSR) and uniaxial tensile creep tests are performed to analyze the thermomechanical behavior of asphalt binders and mixtures, respectively. Uniaxial tensile fatigue tests for seven different asphalt mixtures are conducted to evaluate the effects of aggregate gradations and SBS modifier on the fatigue performance of the mixtures. DSR and uniaxial tensile creep tests results show that the SBS modified asphalt mixtures have better rutting resistance than the unmodified mixtures at high temperatures regardless of the aggregate gradations used. Fatigue factor $G^*sin\delta$ in Superpave binder specification may not be adequate for evaluating the fatigue Performance of asphalt mixtures. It is observed from uniaxial tensile fatigue tests that SBS modified asphalt mixtures compared to unmodified mixtures have ten times longer fatigue lives regardless of the aggregate gradations(dense, SMA, and Superpave gradations) used in the mixtures. The better fatigue performance of the SBS modified mixtures is observed even after long-term aging process. The effect of aggregate gradations on the fatigue performance is not as significant as the SBS modifier. The cellulose fiber added in the SMA mixture has negligible effects on the viscoelastic Properties and fatigue performance of the mixture, but is effective in reducing draindown. Although the SBS modified asphalt binder is used, it may be necessary to add the cellulose fiber into the SMA mixture to prevent the draindown.

  • PDF

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate (잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능)

  • Kim, Hyeong-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

Engineering Properties of the Concrete Using Reject Ash as Pre-mixed Fine Aggregate (리젝트애시를 잔골재로 프리믹스하여 활용하는 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.44-49
    • /
    • 2019
  • The purpose of this study is to analyze the fundamental characteristics of concrete with the change of reject ash(Reject ash=Rj) in the mixed aggregate where single grain aggregate of different grain size and aggregate of opposite grain size are mixed together, to analyze the possibility of a mixed aggregate system that premixes at an aggregate manufacturing plant and delivers it as one aggregate. As a result of the experimental study, it was found that the grain size regulation is satisfied if the mixed aggregate(CSb+SS) is substituted for about 5% of Rj. In the case of the fluidity slump, slump flow and air volume, it was found that they decrease as the substitution ratio of Rj increases, while the compressive strength increases as the substitution ratio of Rj increases. Therefore, it is analyzed that it would contribute greatly to an improvement of quality such as improvement of compressive strength if adequate fluidity and air quantity are secured by the water reducing agent and AE agent while premixing the Rj, which is disposed of by landfill, with about 5% of the mixed aggregate.

Evaluation of Mix Design for Asphalt Mixtures by Bailey Method (Bailey Method를 이용한 아스팔트 혼합물 최적배합설계 평가)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4832-4836
    • /
    • 2012
  • In general, there are needed lots of time and experiments for determination of optimum asphalt content and mix design. The experimental results are highly depended on the skill of testers. Bailey suggested the proper aggregate gradation of hot mix asphalt are a function of special size and passing percent of the specified aggregate to reduce the test errors. In this paper, the asphalt mix designs of 19mm dense graded mix and PA-20mm for FHWA were carried out, using Bailey's method. The use of Bailey method can cut down the testing times to get the proper aggregate gradation for asphalt mix design. In case of 19mm dense graded asphalt mixture, the measured values of CA, $FA_c$, $FA_f$ are 0.724, 0.440, and 0.455, which are within the suggested values by Bailey. Also, in case of PA-20 graded asphalt mixture, the measured values of CA, $FA_c$, $FA_f$ are 0.646, 0.476, and 0.450, respectively.

An Experimental Study on Relation between compressive strength and Shear Wave velocity for characteristics of coarse aggregate size and type of cement (굵은 골재 최대치수 및 시멘트 종류에 따른 압축강도와 전단파 속도의 상관관계에 대한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-IL;Nam, Jeong-Hee;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-175
    • /
    • 2011
  • Strength is one of the very important factors to evaluate the physical properties of concrete. Aggregate forms the most parts in concrete. Cement as a binder in concrete is also closely related to strength. This experiment was tested to understand the effect of the characteristics of aggregate and cement on the relationship between concrete compressive strength and Shear Wave velocity. It was experimented by the different types of cement and maximum coarse aggregate sizes. Type I cement and rapid setting cement was used. Aggregates from three different regions were used. Aggregate of 19mm and 13mm maximum coarse aggregate sizes was used for grading. The relationship between compressive strength and Shear Wave velocity was tested under the condition of same mixture. LA wear test was used to quantify the characteristics of aggregate. As a result, the relationship between concrete compressive strength and Shear Wave velocity was affected by the types of cement, but regular relationship was appeared regardless of types of aggregate, grading and abrasion ratio.

Gradation Curve of Aggregate using Digital Image Process (디지털 이미지 처리 기법을 이용한 골재의 입도분포곡선)

  • Hwang, Tak-Jin;Cho, Jae-Yoon;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.31-37
    • /
    • 2010
  • Shape conversion coefficient and equivalent diameter for changing 2D image to 3D image by the Digital Image Process(DIP) have been suggested and modified particle size distribution curve has been showed. Couple of aggregates, like two different marine aggregates and two different crushed stones, have been employed. The measured flatness ratios of each aggregate were 0.30, 0.36, 0.47 and 0.83, respectively. Also, the conversion shape coefficients of each aggregate were determinded as 0.77, 0.78, 0.84 and 0.92. The size of aggregate has been modified by multiplying the shape conversion coefficient and the aggregate size from DIP. The modified gradation curve with modified volume and weight of aggregate has been suggested. Within the limited test results, DIP is one of useful to get the particle shape of aggregate with limitation of measuring errors and to apply the particle distribution curve.