• Title/Summary/Keyword: 골재원

Search Result 180, Processing Time 0.032 seconds

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Preparation and Release Behavior of Ipriflavone-Loaded PLGA Microsphere for Tissue Engineered Bone (이프리플라본을 함유한 생분해성 PLGA 미립구의 제조 및 조직공학적 골재생을 위한 영향평가)

  • So, Jung-Won;Jang, Ji-Wook;Kim, Soon-Hee;Kim, Geun-Ah;Choi, Jin-Hee;Rhee, John-M.;Son, Young-Suk;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • The aim of this research was to prepare microparticulate systems based on poly (lactide-co-glycolide)(PLGA) for the local release of ipriflavone in order to reduce bone loss. We developed the IP loaded PLGA microspheres using relatively simple oil-in-water(O/W) solvent evaporation method. HPLC was used to perform the in vitro release test of IP and morphology of cell attached on the micro-spheres was investigated using SEM. Cytotoxicity was assayed by cell counting kit-8 (CCK-8) test. Osteogenic differential cells were analyzed by ALP activity. Through RT-PCR analysis, we observed osteocalcin, ALP, and Type I collagen mRNA expression. The release of IP in vitro was more prolonged over 42 days and IP/PLGA microspheres showed the improvement on the cell proliferation, ALP activity and RT-PCR comparing with control (only PLGA). This initial research will be used to direct future work involved in developing this composite injectable bone tissue engineering system.

A Study on Penetration Effect of Penetrating Hardener for Prevention of Scattering of Asbestos Building Materials (석면 건축자재의 비산 방지를 위한 침투성 경화제 침투 효과에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Shin, Hyun-Gyoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.324-330
    • /
    • 2018
  • In accordance with the amendment of the Industrial Safety and Health Act of 2007, Korea completely prohibited the import, distribution and manufacture of asbestos like Europe and Japan. Accordingly, the current problem of asbestos is the safe maintenance and disposal of asbestos construction material, the disposal of asbestos, and the final disposal of asbestos building materials. In the past, Korea used 100,000 tons of asbestos every year, and the building materials using it exceeded 1 million tons per year. These asbestos building materials continued to be used until 2006, and the Ministry predicted that these materials would continue to be maintained until 2044. When the permeable hardening agent is applied to the asbestos building material installed in the pre-pretreatment step for the harmless treatment of the asbestos waste and the dismantling is carried out, the scattering of the asbestos is suppressed in the disassembling step, detoxification treatment conditions can be improved. Therefore, permeable hardeners should be stably penetrated into asbestos building materials. In this study, it is suggested that pre - pretreatment methods for the harmlessization of waste asbestos building materials with medium density level can be presented. In order to efficiently perform pre - treatment for chemical harmlessness in the future, the mixing ratio of permeable hardener and middle water Optimization is the most important factor.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments (기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발)

  • Woo-Suk Nam;Hong-Jae Yim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.20-29
    • /
    • 2024
  • The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

The Bone regenerative effects of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague dawley rats (백서 두개골 결손부에서 항생제를 함유한 키토산 차단막의 골재생 유도 효과)

  • Chae, Gyung-Joon;Kim, Tae-Gyun;Jung, Ui-Won;Lee, Soo-Bok;Jung, Yong-Sik;Lee, Yong-Keun;Kim, Chang-Sung;Chae, Jung-Kiu;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1019-1037
    • /
    • 2005
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chtin. Chitosan is a derivative of chitin made by deacetylation of side chains. Chitosan has been widely studied as bone substitution and membrane material in periodontology. Many experiments using chitosan in various animal models have proven its beneficial effects. Tetracycline has been considered for use in the treatment of chronic periodontal disease and gingivitis. The aim of this study is to evlauate the osteogenesis of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague Dawley rats. An 8mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into five groups: Untreated control group versus four experimental group. Four types of membranes were made and comparative study was been done. Two types of non-woven membranes were made by immersing non-woven chitosan into either the tetracycline solution or chitosan-tetracycline solution. Other two types of sponge membranes were fabricated by immersing chitosan sponge into the tetracycline solution, and subsequent freeze-drying. The animals were sacrificed at 2 and 8 weeks after surgical procedure. The specimens were examined by histologic analyses. The results are as follows: 1. Clinically the use of tetracycline blended chitosan membrane showed great healing capacity. 2. The new bone formations of all the experimental group, non-woven and sponge type membranes were greater than those of control group. But, there was no significant difference between the experimental groups. 3. Resorption of chitosan membranes were not shown in any groups at 2 weeks and 8 weeks. These results suggest that the use of tetracycline blended chitosan membrane on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself. And it implicate that tetracycline blended chitosan membrane might be useful for guided tissue regeneration.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.