• Title/Summary/Keyword: 골격 데이터

Search Result 115, Processing Time 0.03 seconds

A Study on a Animation Using 3D Whole Body Laser Scanned Data (인체 전신 레이저 스캔 데이터를 대상으로 한 인체 애니메이션 연구)

  • Yoon, Geun-Ho;Cho, Chang-Suk
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.116-119
    • /
    • 2012
  • 본 연구는 3D레이저 스캔 방식으로 계측된 인체 데이터를 대상으로 하여 인체의 여러 동작들에 대한 애니메이션 모듈 구현을 목표로 하였다. 이를 위하여 애니메이션 회전을 위한 기준점인 인체의 골격 기준점을 추출하고 추출된 기준점을 이용하여 골격을 잡고 각 골격에 따른 계층트리를 구성하였다. 구성된 계층트리의 골격에 해당되는 오브젝트 정점들을 골격과 연결하고 주어진 애니메이션 3차원 정점들에 행동 패턴을 적용하여 스캔데이터에 애니메이션을 구현하였다.

  • PDF

A Study for Animation Using 3D Laser Scanned Body Data (인체 전신 레이저 스캔 데이터를 대상으로 한 인체 애니메이션 연구)

  • Yoon, Geun-Ho;Cho, Chang-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1257-1263
    • /
    • 2012
  • An implementation of animation module using the 3D body data scanned by laser scanner is reported in this paper. Characteristic points of the skeleton in human body were picked up as pivot point for 3D rotation. The body data set wes reconstructed as objects built in hierarchical tree structure, which is based on skeleton model. In order to implement the 3D animation of the laser scanned body data, the vertexes of the objects were connected as skeleton structure and animated to follow dynamic patterns inputted by user.

Hydraulic Exoskeletal Robot for Assisting Muscle Power (유압식 근력지원 외골격 로봇 개발)

  • Jang, Jae-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.485-487
    • /
    • 2011
  • 본 논문에서는 인간의 근력을 보조 또는 증폭시켜 줄 수 있는 유압 구동식 외골격 로봇을 개발하였다. 인간 신체 데이터와 보행 분석 데이터를 기반으로 로봇의 외골격을 설계 하였으며, 이를 구동하기 위한 알고리즘, 제어기 H/W 등을 개발하였다. 근력지원 외골격 로봇을 설계 제작하여, 실제 실험을 통해 설계, 제어 등 로봇의 현장 적용 가능성 등을 판단할 수 있는 플랫폼을 가질 수 있었다.

  • PDF

Regional Boundary Operation for Character Recognition Using Skeleton (골격을 이용한 문자 인식을 위한 지역경계 연산)

  • Yoo, Suk Won
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.361-366
    • /
    • 2018
  • For each character constituting learning data, different fonts are added in pixel unit to create MASK, and then pixel values belonging to the MASK are divided into three groups. The experimental data are modified into skeletal forms, and then regional boundary operation is used to create a boundary that distinguishes the background region adjacent to the skeleton of the character from the background of the modified experimental data. Discordance values between the modified experimental data and the MASKs are calculated, and then the MASK with the minimum value is found. This MASK is selected as a finally recognized result for the given experiment data. The recognition algorithm using skeleton of the character and the regional boundary operation can easily extend the learning data set by adding new fonts to the given learning data, and also it is simple to implement, and high character recognition rate can be obtained.

Human Body Modeling Using Skin-Skeleton Binding Technique (스킨-스켈레턴 바인딩 기법을 이용한 인체 모델링)

  • Choi, Hae-Ock;Yoo, Tae-Sun;Jun, Byoung-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1873-1882
    • /
    • 1998
  • 사실감있는 인체 모델과 동작제어 기술은 컴퓨터 그래픽스와 가상현실감 및 시뮬레이션등의 다양한 응용 분야에서 이용되고 있다. 인체의 모델링과 이의 동작을 제어하는 기술은 관절 구조의 인체를 뼈대와 관절 그리고 이를 둘러싸고 있는 피부로 모델링하고 운동학에 기반하여 각 관절을 제어하여 인체의 동작을 생성한다. 본 논문에서는 인체의 모델링을 위한 스킨-스켈레턴 바인딩 알고리즘을 제안한다. 인체의 골격구조를 관리하기 위한 일반적인 계층적 다관절체 데이터 구조를 설계하고, 골격 데이터에 피부를 입히기 위한 스킨-tm켈레던 바인딩 알고리즘을 설계한다. 제안된 알고리즘은 전처리, 세그멘테이션과 바인딩의 세기능 모듈로 구성된다. 바인딩 가능한 요소들의 효율적인 탐색을 위하여 분할해결 방식을 적용한 후보 테이블을 이용하였다. 20개의 관절로 이루어진 인체 골격 데이터와 Inventor 포맷의 인체 피부 데이터로 알고리즘을 실험하였다.

  • PDF

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

A Study on Posture Discrimination using Coordinate Transformation of Skeleton Data (골격 데이터의 좌표변환을 이용한 자세판별 연구)

  • Kim, Yong-jin;Noh, Yun-hong;Jeong, Do-un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.510-511
    • /
    • 2017
  • In this paper, a study was conducted to prevent spinal - related diseases and to help posture correction by feeding back the wrong attitude to the users. Kinect sensor was used for this purpose. In order to measure the movement of the user, the degree of motion change was measured by indexing the skeletal data coordinate value. It is confirmed that the implemented system can observe not only posture but also distraction of user.

  • PDF

A Study on a Walking Animation Using 3D Whole Body Laser Scanned Data (인체 전신 레이저 스캔 데이터를 대상으로 한 인체 보행 애니메이션 연구)

  • Yoon, Geun-Ho;Choi, Ran;Cho, Chang-Suk
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.519-521
    • /
    • 2011
  • 본 연구는 3D 레이저 스캔 방법으로 계측된 인체 데이터를 대상으로 3D 아바타 애니메이션 모듈 구현을 목표로 한다. 이를 위하여 인체의 뼈 골격계 기준점을 지정한다. 기준점을 이용하여 계층에 맞는 골격을 잡아 오브젝트를 이루고 있는 정점들과 그에 해당되는 골격들을 연결하고 기구학에 의한 행동패턴을 제작하여 아바타에 애니메이션을 적용 시킨다. 이를 위하여Visual C++ OpenGL 라이브러리를 이용 하였고 인체 전신 레이저 스캔 데이터를 대상으로 하였다.

A Keyword Network Analysis of Standard Medical Terminology for Musculoskeletal System Using Big Data (빅데이터를 활용한 근골격계 표준의료용어에 대한 키워드 네트워크 분석)

  • Choi, Byung-Kwan;Choi, Eun-A;Nam, Moon-Hee
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.681-693
    • /
    • 2022
  • The purpose of this study is to suggest a plan to utilize atypical data in the health care field by inferring standard medical terms related to the musculoskeletal system through keyword network analysis of medical records of patients hospitalized for musculoskeletal disorders. The analysis target was 145 summaries of discharge with musculoskeletal disorders from 2015 to 2019, and was analyzed using TEXTOM, a big data analysis solution developed by The IMC. The 177 musculoskeletal related terms derived through the primary and secondary refining processes were finally analyzed. As a result of the study, the frequent term was 'Metastasis', the clinical findings were 'Metastasis', the symptoms were 'Weakness', the diagnosis was 'Hepatitis', the treatment was 'Remove', and the body structure was 'Spine' in the analysis results for each medical terminology system. 'Oxycodone' was used the most. Based on these results, we would like to suggest implications for the analysis, utilization, and management of unstructured medical data.

Analysis of Work-Related Musculoskeletal Disorders Research Trends Using Keyword Frequency Analysis and CONCOR Technique

  • Geon-Hui Lee;Seo-Yeon Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.137-144
    • /
    • 2023
  • One of the methods being suggested as a way to address social issues is the utilization of big data analysis techniques. In this study, we utilized keyword network analysis and CONCOR analysis techniques to analyze the research trends on work-related musculoskeletal disorders. The findings of this study are as follows: Firstly, the number of papers on work-related musculoskeletal disorders has been consistently increasing, with an average of over 33 articles published per year since the investigation of musculoskeletal risk factors in 2003. The publication rate showed an increase from 2007 to 2009. Secondly, the frequency of the top keywords identified through text mining were as follows: work (4,940), musculoskeletal disorders (2,197), symptoms (1,836), related (1,769), musculoskeletal system (1,421). Thirdly, the CONCOR analysis resulted in the formation of four clusters: ' Musculoskeletal disorder treatment', 'Occupational health and safety management', 'Work environment assessment', and ' Workplace environment measurement'. It is expected that this study will contribute to the development of research on musculoskeletal disorders and provide various directions for future studies.