• Title/Summary/Keyword: 고 Mn 오스테나이트계 스테인리스강

Search Result 7, Processing Time 0.028 seconds

Effect of Reverse Transformation on the Damping Capacity of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태의 영향)

  • Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-65
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the damping capacity in high manganese austenitic stainless steel. ${\alpha}^{\prime}$-martensite was formed with the specific direction and surface relief by deformation. Over 95% of the austenite phase was transformed to deformation-induced ${\alpha}^{\prime}$-martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. Damping capacity was increased up to $700^{\circ}C$, and than unchanged with the increasing annealing temperature. Damping capacity increased steeply with an increasing reverse treatment time up to 10min, whereas there were no significant change with a treatment time of more than 10 min. Damping capacity increased with an increasing the reversed austenite and was strongly affected by reversed austenite.

Effect of Deformation Induced Martensite Transformation on the Mechanical Properties in Austenitic Stainless Steel with High Mn (고 Mn 오스테나이트계 스테인리스강의 기계적성질에 미치는 가공유기 마르텐사이트 변태의 영향)

  • Hur, T.Y.;Han, H.S.;Lee, S.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • The effect of deformation induced martensite transformation on the mechanical properties in austenitic stainless steel with high Mn was studied. ${\alpha}$'-martensite was formed by deformation in austenitic stainless steel with high Mn. Deformation induced ${\alpha}$'-martensite was formed with surface relief by cold rolling. With the increase of deformation degree, volume fraction of deformation induced martensite was increased rapidly in early stage of deformation and then, increased slowly. With the increase of deformation degree, hardness and tensile strength were rapidly increased with linear relations, while elongation was rapidly decreased and then slowly decreased. Hardness, tensile strengths and elongation were influenced strongly by deformation induced martensite.

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향)

  • Kang, Chang-Yong;Hur, Tae-Young;Kim, Young-Hwa;Koo, Cha-Jin;Han, Hyun-Sung;Lee, Sang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.

Effect of Grain Size on the Deformation Induced Martensite Transformation and Mechanical Properties in Austenitic Stainless Steel with High Amount of Mn (고 Mn 오스테나이트계 스테인리스강의 가공유기 마르텐사이트 변태 및 기계적성질에 미치는 결정립크기의 영향)

  • Hur, T.Y.;Wang, J.P.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2011
  • The effect of grain size on the deformation induced martensite transformation and mechanical properties in austenitic stainless steel with high amount of Mn was studied. a'-martensite was formed by deformation and deformation induced martensite was formed with surface relief. With increase of grain size, volume fraction of deformation induced martensite was increased. With the increase in degree of cold rolling, hardness, and tensile strength was rapidly increased with linear relationship, while, elongation was decreased rapidly and then decreased slowly. With increase of grain size, hardness and tensile strength was rapidly increased with linear relationship, while elongation was decreased rapidly. The hardness, tensile strengths, and elongation were more strongly influenced by deformation induced martensite than the grain size.

Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel (냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향)

  • Hwang, T.H.;Jung, M.H.;Lee, J.Y.;Lee, H.B.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.