• Title/Summary/Keyword: 고 황산염

Search Result 68, Processing Time 0.031 seconds

An Experimental Study on the Hydration and Mechanical Properties of High Strength Concrete with High Calcium Sulfate Cement (고황산염시멘트를 이용한 고강도콘크리트의 수화 및 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.129-138
    • /
    • 1993
  • 프리텐션 방식 원심력 고강도 콘크리트 말뚝[KS F 4306]제조에 관한 실험적 연구로써 고황산염시멘트를 이용한 800kg/$ extrm{cm}^2$이상의 고강도콘크리트 제조시 수화 특성검토와 콘크르트 조직내의 기공율과 압축강도간의 상관식을 도출하여 고강도 발현기구를 규명하였으며 콘크리트 압축 및 휨강도간의 상관식 유도와 내구성 측면에서의 내동해성, 건조수축, 화학저항성등을 보통 포틀랜드 시멘트와 비교 고찰한 결과, 고황상염시멘트의 내구성이 우수함을 확인하였다.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 메탄 하이드레이트 퇴적토의 미생물 군집 특성)

  • Shin, Ji-Hye;Nam, Ji-Hyun;Lee, Jin-Woo;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Experimental Study on Chloride Penetration into Concrete under Combined Exposure Conditions of Chlorides and High Concentrated Sulfates (고농도 황산염 이온이 함께 존재하는 경우의 염소이온 침투특성에 관한 실험 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Jiang, Yi-Rong;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • Recently, the durability of concrete structures has received great attention as the number of sea-side structures, such as new airport, bridges, and nuclear power plants, increases continuously. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the effects of combined deterioration due to chlorides and sulfates in concrete structures. To this end, comprehensive experimental program has been set up to observe the chloride penetration behavior for various test series. The test results indicate that the chloride penetration is more pronounced for the case of combined attack than the case of single chloride attack. The surface chloride content is found to increase with time and the diffusion coefficient for chloride is found to decrease with time. The prediction equations for surface chloride content and diffusion coefficient were proposed according to test results. The equations for chloride penetration considering the time-dependent diffusion coefficients and surface chlorides were also suggested. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of chlorides and high concentration sulfates but the future studies for combined environment will assure the precise assessment.

Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes (고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성)

  • Lee, Ji Young;Lee, Seung Yeop;Baik, Min Hoon;Jeong, Jong Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • There was a study for biological characteristics, except for physico-chemical and mineralogical properties, on the natural bentonite that is considered as a buffer material for the high-level radioactive waste disposal site. A bentonite slurry that was prepared from a local 'Gyeongju bentonite' in Korea was incubated in a serum bottle with nutrient media over 1 week and its stepwise change was observed with time. From the activated bentonite in the nutrient media, we can find a certain change of both solid and liquid phases. Some dark and fine sulfides began to be generated from dissolved sulfate solution, and 4 species of sulfate-reducing bacteria (SRB) were identified as living cells in samples that were periodically taken and incubated. These results show that sulfate-reducing (or metal-reducing) bacteria are adhering and existing in the powder of bentonite, suggesting that there may be a potential occurrence of longterm biogeochemical effects in and around the bentonite buffer in underground anoxic environmental conditions.

Development of low-carbon eco-friendly concrete using super-sulfated cement (고황산염 시멘트를 활용한 저탄소 친환경 콘크리트 개발)

  • Ki, Jun-Do;Lee, Sang-Hyun;Kim, Young-Sun;Jeon, Hyun-Soo;Seok, Won-Kyun;Yang, Wan-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.199-200
    • /
    • 2023
  • Eco-friendly concrete contains only 5% of cement yet achieves equal or greater strength compared to conventional concrete, reducing salt-attack impact and hydration heat by more than 30% and ensuring higher construction quality for underground structures. Furthermore, eco-friendly concrete can reduce up to 90% of carbon dioxide emissions compared to traditional concrete, enabling a reduction of approximately 6,000 tons of carbon emissions for 1,000 of apartment units construction. This is equivalent to planting around 42,000 trees

  • PDF

Effect of Sulfate and Heavy Metals on Methanogenic Activation of in the Anaerobic Digestion of Tannery Wastes (피혁폐수의 혐기성 소화시 황산염과 중금속이 메탄균 활성에 미치는 영향)

  • Shin, Hang Sik;Oh, Sae Eun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • For treating tannery wastewater containing high sulfate and heavy metals, test was performed to assess their performance, competition between SRB (sulfate reducing bacteria) and MPB (methane producing bacteria), and the activity of MPB according to change of chromium concentrations. COD removal efficiency was above 70% at VLR (volumetric loading rate) of 2.0 gCOD/I.day and HRT (hydraulic retention time) of 18hrs at $35^{\circ}C$. In the competition between SRB and MPB, about 15% of the removed COD was utilized by SRB in the begining, but it became 43% at the end. It indicated that MPB was strongly suppressed by the occurrence of significant sulfate reduction since a large electron flow was uptaken by SRB. For the entire experiment, removal efficiencies of chromium concentration were more than 90%. Despite high removal efficiencies of chromium concentration, performance of reactor did not change significantly during the experimental periods. Expecially, chromium (III) is tannery wastewater is less toxic than chromium (VI).

  • PDF

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.