위성 원격 탐사에서는 센서 운영 환경으로 인하여 영상을 수집하는 동안 영상의 질 저하가 일어나며 이러한 영상의 질 저하는 관측된 자료로부터 유용한 정보를 확인하거나 추출하는 데 악 영향을 미치는 번짐 현상(blurring)과 잡음 (noise)을 야기시킨다. 본 연구는 원격 탐사 영상 자료의 질 저하 현상을 모형화하기 위해 Gaussian 가산 잡음과 Markov random field로 정의되는 공간적 연결성을 가정하였다. 그리고 질 저하된 관측 자료로부터 원래 강도의 영상을 복원하기 위한 Point-Jacobian 반복 maximum a posteriori (MAP) 추정 법을 제안한다. 제안 연구는 이웃 창의 형태로 8 개 방향의 창으로 구성된 방사형을 사용하며 각 방향에서의 중심 화소와의 이웃 화소들 간의 Mahalanobis 제곱 거리를 경계 근접성 측정치로 사용한다. 제안 방법의 성능을 평가하기 위해서 고해상도 영상 자료에 나타날 수 있는 다양한 형태의 패턴을 사용하는 simulation 자료를 생성하여 화소 단위 분류 법을 사용하여 정량적 평가를 수행하였고 한반도 안양 북부 지역에서 관측된 1 m 급 IKONOS 자료의 무감독 분할을 통해 정성적 평가를 수행하였다. 실험 결과는 고해상도 원격 탐사 자료 분석에서 제안 영상 복원 법을 적용하면 현저히 분석의 정확성을 높이는 것을 보여 준다.
도심지 모델링과 분석을 효과적으로 수행하기 위해서는 다른 시기나 다른 지역의 추가적인 고해상도 위성영상이 반드시 필요하다. 그러나 같은 지상 개체라 하더라도 서로 다른 영상에서 방사적인 불일치가 존재하며 이는 영상 처리와 분석의 정확도를 저하시키는 원인이 된다. 더욱이 도심지의 경우 건물, 수목, 교량, 기타 구조물 등 높이를 갖는 개체들은 영상 전체에 걸쳐 그림자를 발생시키며 이는 상대 방사 정규화의 질을 저하시킨다. 본 연구에서는 태양과 위성의 기하학적 위치 정보, 부가적인 수치 표고 모델이 없어도 적용이 가능한 단영상 기반의 그림자 추출기법을 적용하고 그림자의 영향을 배제한 선택적인 히스토그램 매칭 기법을 제안하였다. 건물의 에지 버퍼 영역에 대한 인접 정보와 분할을 통해 생성된 객체의 공간 및 분광인자를 이용하여 그림자를 추출한 후, 아스팔트 도로와 같이 그림자로 잘못 추출된 이상 객체를 제거하였다. 최종적으로 그림자 지역이 마스킹 된 Quickbird-2 다시기 영상을 이용하여 비그림자 지역만을 이용하여 선택적 히스토그램 매칭을 수행하였다.
전산모형시험을 통하여 고해상도 해양반사파 탐사를 위한 최적 장비구성과 자료획득변수를 결정하였다. 조사선 온누리호에 탑재된 각기 다른 6종류의 독립 에어건과 1쌍의 cluster에 대하여 시간 및 주파수 영역에서 분석한 원거리장 파형특성은 내부용적 $2.46{\ell}$의 슬리브건 2개로 구성된 cluster를 2m 정도의 깊이에서 발파할 경우에 고해상도 탐사시 적합한 원거리장 파형이 발생될 수 있음을 보인다. 온누리호의 12채널 스트리머는 96채널 스트리머와 비교할 때, 신호대 잡음비가 다소 낮은 문제가 있으나, 높은 수직 및 수평 해상도를 얻을 수 있어 천부 반사파탐사에 적합한 것으로 분석된다. 기타 획득변수는, 대상심도, 주파수범위, 에어건 내부용적, 수신 채널수, 콤프세샤 용량 등 제반요소를 고려할 때, 기록시간 1m, 샘플간격 1ms, 발파간격 3.125m 혹은 6.25m가 적당한 것으로 판단된다.
이 연구는 기존의 분광특성에 의한 영상분류방법들이 고해상도 위성영상에 어느 정도 적절한지 알아보는데 목적이 있다. 이를 위하여 매개변수법과 비매개변수법을 혼합한 감독분류, 퍼지이론을 적용한 감독분류 그리고 무감독분류방법을 각각 적용하여 토지피복분류를 실시하고 각 방법들의 적용결과를 서로 비교하였다. 또한 육안판독과 분광특성을 이용한 영상분류 결과를 서로 비교하여 각 방법 간 토지피복분류의 결과를 비교 분석하였다. 실증연구 결과, 고해상도 위성영상은 반사값의 복잡성, 그림자의 영향 등으로 인하여 노이즈 현상이 심하게 발생하였다. 이러한 고해상도 위성영상은 무감독분류보다는 감독분류가 더 적절한 분석방법이며, 특히 퍼지이론을 적용한 감독분류방법이 가장 우수한 것으로 나타났다. 그러나 토지피복분류결과의 전체 정확도가 76% 정도에 불과해 토지피복분류결과의 신뢰성이 낮았다. 또한 육안판독과 영상분류 결과를 서로 비교한 바 뚜렷한 경계와 넓은 면적을 갖는 농경지 등의 항목은 일치도가 높은 반면 산발적으로 분포해 있는 초지 등의 항목은 일치도가 낮게 나타났다. 영상분류와 육안판독 간의 일치도는 79%로 나타났다.
유역 내 수자원 계획을 효율적으로 수립하기 위해서는 장기간에 걸친 수문 모델링 뿐만 아니라 미래 기후 시나리오에 따른 수문학적 기후변화 영향 분석도 중요하다. 이를 위해서는 관측 값에 기반한 고품질 및 고해상도 격자형 기상자료 생산이 필수적이다. 하지만, 우리나라는 종관기상관측시스템(ASOS)과 방재기상관측시스템(AWS)으로 이루어진 고밀도 관측 네트워크가 2000년 이후부터 이용 가능했기에 장기간 격자형 기상자료가 부족하다. 이를 보완하고자 본 연구는 가정적인 상황에 기반하여 만약 2000년 이전에도 현재와 동일한 고밀도 관측 네트워크가 존재했다면 산출 가능했을 장기간 일 단위 고해상도 격자형 기상자료를 생산하는 것을 목표로 한다. 구체적으로, 2000년을 기준으로 최근과 과거 기간의 격자형 기상자료를 딥러닝 알고리즘으로 모델링하여 과거 기간을 대상으로 기상자료(일 단위 기온, 강수량)의 공간적 변동성 및 특성을 재구성한다. 격자형 기상자료의 생산을 위해 우리나라의 고도에 기반하여 기상 인자들의 영향을 정량화 하는 보간법인 K-PRISM을 적용하여 고밀도 및 저밀도 관측 네트워크로 두 가지 격자형 기상자료를 생산한다. 생산한 격자형 기상자료 중 저밀도 관측 네트워크의 자료를 입력 자료로, 고밀도 관측 네트워크의 자료를 출력 자료로 선정하여 각 격자점에 대해 Long-Short Term Memory(LSTM) 알고리즘을 개발한다. 이 때, 멀티 그래픽 처리장치(GPU)에 기반한 병렬 처리를 통해 비용 효율적인 계산이 가능하도록 한다. 최종적으로 1973년부터 1999년까지의 저밀도 관측 네트워크의 격자형 기상자료를 입력 자료로 하여 해당 기간에 대한 고밀도 관측 네트워크의 격자형 기상자료를 생산한다. 개발된 대부분의 예측 모델 결과가 0.9 이상의 NSE 값을 나타낸다. 따라서, 본 연구에서 개발된 모델은 고품질의 장기간 기상자료를 효율적으로 정확도 높게 산출하며, 이는 향후 장기간 기후 추세 및 변동 분석에 중요 자료로 활용 가능하다.
Godunov형 모형을 이용한 홍수모델링에서는 일반적으로 구조적 사각격자나 비구조적 삼각격자가 주로 적용된다. 2차원 수치모형을 이용한 홍수모델링에서 연구유역의 정보가 격자의 노드나 중심에 입력되므로 적용격자의 유형과 생성방법에 따라 모형의 입력자료 오차에 영항을 줄 수 있다. 따라서, 연구유역이 지형 변동성이 심한 지역이거나 흐름형상이나 흐름변동이 심한 구간이라면, 고해상도 격자를 통해 모형의 입력자료 오차를 최소화할 할 수 있다. 본 연구에서는 2가지 유형에 대한 연구를 수행하였다, 첫 번째는 홍수해석을 위한 2차원 모형의 격자형상과 해상도에 따른 홍수위 및 홍수범람범위를 비교·분석하는 연구를 수행하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 홍수가 발생한 영국의 Severn 강 유역이다. 연구유역의 홍수 모델링을 위한 지형자료는 3m 해상도의 LiDAR(Light Detection And Ranging)를 이용하여 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수위 및 홍수범람범위를 비교·분석하기 위해서 홍수 발생기간 동안 촬영된 4개(2000년 8월 11, 14, 15, 17일)의 ASAR(Advanced Synthetic Aperture Radar) 영상자료를 활용하였다. 즉, ASAR 영상으로 촬용된 최대범람시기 및 홍수류의 배수기를 활용하여 최대범람범위뿐만 아니라 홍수가 증가하는 시기와 하류단 배수로 인해 홍수가 감소하는 시기를 모두 포함하는 홍수범람범위에 대한 격자유형별 2차원 홍수범람모형의 계산 결과에 대해 비교하였다. 두 번째는 아마존 강 중류유역의 2,500K㎡ 면적에 해당하는 대규모 유역에 대해 SRTM(Shuttle Radar Topography Mission) 지형자료를 이용하여 홍수기와 갈수기에 대해 2차원 모델링을 수행하고 그 결과를 위성자료와 비교하였다.
광학 위성영상은 국가 보안 및 정보 획득을 목적으로 사용되며 그 활용성은 증가하고 있다. 그러나, 기상 조건 및 시간의 제약으로 사용자의 요구에 적합하지 않은 저품질의 영상을 획득하게 된다. 본 논문에서는 광학 위성영상의 구름 폐색영역을 모의하기 위하여 고해상도 SAR 영상을 참조한 딥러닝 기반의 영상변환 및 컬러화 모델을 생성하였다. 해당 모델은 적용 알고리즘 및 입력 데이터 형태에 따라 실험하였으며 생성된 모의영상을 비교 분석하였다. 특히 입력하는 흑백영상과 SAR 영상간의 화소값 정보량이 유사하도록 하여 상대적으로 색상정보량 부족에서 오는 문제점을 개선하였다. 실험 결과, Gray-scale 영상과 고해상도 SAR 영상으로 학습한 모의영상의 히스토그램 분포가 비교적 원 영상과 유사하였고, 정량적인 분석을 위하여 산정한 RMSE 값은 약 6.9827, PSNR 값은 약 31.3960으로 나타났다.
의료 현장에서는 매우 고해상도의 이미지를 사용하고 있으며, 이는 손실에 매우 민감한 정보이다. 이에 따라 높은 대역폭뿐만 아니라 고신뢰성 전송을 제공할 수 있는 광 인터넷의 활용이 요구되고 있다. 그러나 인터넷의 특성상 다양한 종류의 데이터가 동일한 대역폭을 활용하게 되고, 이를 효과적으로 차별화할 수 있는 수단이 요구되고 있다. 이를 위해 광 지연 라인 버퍼가 많이 활용되고 있다. 그러나, 이러한 버퍼는 제공 부하, 측정된 데이터 버스트 크기, 기본 지연 유닛 등과 같은 최적값을 이용해 구성된다. 광 버퍼는 한 번 설정되면 변경할 수 없다. 그러므로 데이터 버스트 크기를 동적으로 변경시키는 방법이 활용되고 있다. 그러나 동적으로 버스트의 길이를 변화시키는 것은 상당한 불안정성을 내포하고 있다. 이에 본 논문에서는 안정적인 동작을 보장할 수 있는 동작 조건을 분석하고자 한다. 본 논문의 기법을 활용해 높은 우선순위의 고해상도 의료 데이터를 손실 없이 안정적으로 전송할 수 있다.
오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.
최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.