• 제목/요약/키워드: 고해상 분석

검색결과 942건 처리시간 0.032초

Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원 (Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제30권6호
    • /
    • pp.817-827
    • /
    • 2014
  • 위성 원격 탐사에서는 센서 운영 환경으로 인하여 영상을 수집하는 동안 영상의 질 저하가 일어나며 이러한 영상의 질 저하는 관측된 자료로부터 유용한 정보를 확인하거나 추출하는 데 악 영향을 미치는 번짐 현상(blurring)과 잡음 (noise)을 야기시킨다. 본 연구는 원격 탐사 영상 자료의 질 저하 현상을 모형화하기 위해 Gaussian 가산 잡음과 Markov random field로 정의되는 공간적 연결성을 가정하였다. 그리고 질 저하된 관측 자료로부터 원래 강도의 영상을 복원하기 위한 Point-Jacobian 반복 maximum a posteriori (MAP) 추정 법을 제안한다. 제안 연구는 이웃 창의 형태로 8 개 방향의 창으로 구성된 방사형을 사용하며 각 방향에서의 중심 화소와의 이웃 화소들 간의 Mahalanobis 제곱 거리를 경계 근접성 측정치로 사용한다. 제안 방법의 성능을 평가하기 위해서 고해상도 영상 자료에 나타날 수 있는 다양한 형태의 패턴을 사용하는 simulation 자료를 생성하여 화소 단위 분류 법을 사용하여 정량적 평가를 수행하였고 한반도 안양 북부 지역에서 관측된 1 m 급 IKONOS 자료의 무감독 분할을 통해 정성적 평가를 수행하였다. 실험 결과는 고해상도 원격 탐사 자료 분석에서 제안 영상 복원 법을 적용하면 현저히 분석의 정확성을 높이는 것을 보여 준다.

도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭 (Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area)

  • 염준호;김용일
    • 대한공간정보학회지
    • /
    • 제20권2호
    • /
    • pp.47-54
    • /
    • 2012
  • 도심지 모델링과 분석을 효과적으로 수행하기 위해서는 다른 시기나 다른 지역의 추가적인 고해상도 위성영상이 반드시 필요하다. 그러나 같은 지상 개체라 하더라도 서로 다른 영상에서 방사적인 불일치가 존재하며 이는 영상 처리와 분석의 정확도를 저하시키는 원인이 된다. 더욱이 도심지의 경우 건물, 수목, 교량, 기타 구조물 등 높이를 갖는 개체들은 영상 전체에 걸쳐 그림자를 발생시키며 이는 상대 방사 정규화의 질을 저하시킨다. 본 연구에서는 태양과 위성의 기하학적 위치 정보, 부가적인 수치 표고 모델이 없어도 적용이 가능한 단영상 기반의 그림자 추출기법을 적용하고 그림자의 영향을 배제한 선택적인 히스토그램 매칭 기법을 제안하였다. 건물의 에지 버퍼 영역에 대한 인접 정보와 분할을 통해 생성된 객체의 공간 및 분광인자를 이용하여 그림자를 추출한 후, 아스팔트 도로와 같이 그림자로 잘못 추출된 이상 객체를 제거하였다. 최종적으로 그림자 지역이 마스킹 된 Quickbird-2 다시기 영상을 이용하여 비그림자 지역만을 이용하여 선택적 히스토그램 매칭을 수행하였다.

전산모형을 통한 고해상도 다중채널 해양반사파의 획득변수 결정 (Determination of Acquisition Parameters for High-Resolution Marine Reflection Surveys through a Computer Model Study)

  • 김기영;주형태;홍종국;유해수
    • 지질공학
    • /
    • 제4권2호
    • /
    • pp.187-206
    • /
    • 1994
  • 전산모형시험을 통하여 고해상도 해양반사파 탐사를 위한 최적 장비구성과 자료획득변수를 결정하였다. 조사선 온누리호에 탑재된 각기 다른 6종류의 독립 에어건과 1쌍의 cluster에 대하여 시간 및 주파수 영역에서 분석한 원거리장 파형특성은 내부용적 $2.46{\ell}$의 슬리브건 2개로 구성된 cluster를 2m 정도의 깊이에서 발파할 경우에 고해상도 탐사시 적합한 원거리장 파형이 발생될 수 있음을 보인다. 온누리호의 12채널 스트리머는 96채널 스트리머와 비교할 때, 신호대 잡음비가 다소 낮은 문제가 있으나, 높은 수직 및 수평 해상도를 얻을 수 있어 천부 반사파탐사에 적합한 것으로 분석된다. 기타 획득변수는, 대상심도, 주파수범위, 에어건 내부용적, 수신 채널수, 콤프세샤 용량 등 제반요소를 고려할 때, 기록시간 1m, 샘플간격 1ms, 발파간격 3.125m 혹은 6.25m가 적당한 것으로 판단된다.

  • PDF

IKONOS 영상의 토지피복분류 방법에 관한 실증 연구 (An Empirical Study on the Land Cover Classification Method using IKONOS Image)

  • 사공호상;임정호
    • 한국지리정보학회지
    • /
    • 제6권3호
    • /
    • pp.107-116
    • /
    • 2003
  • 이 연구는 기존의 분광특성에 의한 영상분류방법들이 고해상도 위성영상에 어느 정도 적절한지 알아보는데 목적이 있다. 이를 위하여 매개변수법과 비매개변수법을 혼합한 감독분류, 퍼지이론을 적용한 감독분류 그리고 무감독분류방법을 각각 적용하여 토지피복분류를 실시하고 각 방법들의 적용결과를 서로 비교하였다. 또한 육안판독과 분광특성을 이용한 영상분류 결과를 서로 비교하여 각 방법 간 토지피복분류의 결과를 비교 분석하였다. 실증연구 결과, 고해상도 위성영상은 반사값의 복잡성, 그림자의 영향 등으로 인하여 노이즈 현상이 심하게 발생하였다. 이러한 고해상도 위성영상은 무감독분류보다는 감독분류가 더 적절한 분석방법이며, 특히 퍼지이론을 적용한 감독분류방법이 가장 우수한 것으로 나타났다. 그러나 토지피복분류결과의 전체 정확도가 76% 정도에 불과해 토지피복분류결과의 신뢰성이 낮았다. 또한 육안판독과 영상분류 결과를 서로 비교한 바 뚜렷한 경계와 넓은 면적을 갖는 농경지 등의 항목은 일치도가 높은 반면 산발적으로 분포해 있는 초지 등의 항목은 일치도가 낮게 나타났다. 영상분류와 육안판독 간의 일치도는 79%로 나타났다.

  • PDF

딥러닝에 기반한 우리나라 장기간 일 단위 고해상도 격자형 기상자료 생산 (Development of long-term daily high-resolution gridded meteorological data based on deep learning)

  • 정유경;변규현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.198-198
    • /
    • 2023
  • 유역 내 수자원 계획을 효율적으로 수립하기 위해서는 장기간에 걸친 수문 모델링 뿐만 아니라 미래 기후 시나리오에 따른 수문학적 기후변화 영향 분석도 중요하다. 이를 위해서는 관측 값에 기반한 고품질 및 고해상도 격자형 기상자료 생산이 필수적이다. 하지만, 우리나라는 종관기상관측시스템(ASOS)과 방재기상관측시스템(AWS)으로 이루어진 고밀도 관측 네트워크가 2000년 이후부터 이용 가능했기에 장기간 격자형 기상자료가 부족하다. 이를 보완하고자 본 연구는 가정적인 상황에 기반하여 만약 2000년 이전에도 현재와 동일한 고밀도 관측 네트워크가 존재했다면 산출 가능했을 장기간 일 단위 고해상도 격자형 기상자료를 생산하는 것을 목표로 한다. 구체적으로, 2000년을 기준으로 최근과 과거 기간의 격자형 기상자료를 딥러닝 알고리즘으로 모델링하여 과거 기간을 대상으로 기상자료(일 단위 기온, 강수량)의 공간적 변동성 및 특성을 재구성한다. 격자형 기상자료의 생산을 위해 우리나라의 고도에 기반하여 기상 인자들의 영향을 정량화 하는 보간법인 K-PRISM을 적용하여 고밀도 및 저밀도 관측 네트워크로 두 가지 격자형 기상자료를 생산한다. 생산한 격자형 기상자료 중 저밀도 관측 네트워크의 자료를 입력 자료로, 고밀도 관측 네트워크의 자료를 출력 자료로 선정하여 각 격자점에 대해 Long-Short Term Memory(LSTM) 알고리즘을 개발한다. 이 때, 멀티 그래픽 처리장치(GPU)에 기반한 병렬 처리를 통해 비용 효율적인 계산이 가능하도록 한다. 최종적으로 1973년부터 1999년까지의 저밀도 관측 네트워크의 격자형 기상자료를 입력 자료로 하여 해당 기간에 대한 고밀도 관측 네트워크의 격자형 기상자료를 생산한다. 개발된 대부분의 예측 모델 결과가 0.9 이상의 NSE 값을 나타낸다. 따라서, 본 연구에서 개발된 모델은 고품질의 장기간 기상자료를 효율적으로 정확도 높게 산출하며, 이는 향후 장기간 기후 추세 및 변동 분석에 중요 자료로 활용 가능하다.

  • PDF

2차원 유한체적모형을 적용한 고해상도 대규모 유역 홍수모델링 (High Resolution and Large Scale Flood Modeling using 2D Finite Volume Model)

  • 김병현;김현일;한건연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.413-413
    • /
    • 2020
  • Godunov형 모형을 이용한 홍수모델링에서는 일반적으로 구조적 사각격자나 비구조적 삼각격자가 주로 적용된다. 2차원 수치모형을 이용한 홍수모델링에서 연구유역의 정보가 격자의 노드나 중심에 입력되므로 적용격자의 유형과 생성방법에 따라 모형의 입력자료 오차에 영항을 줄 수 있다. 따라서, 연구유역이 지형 변동성이 심한 지역이거나 흐름형상이나 흐름변동이 심한 구간이라면, 고해상도 격자를 통해 모형의 입력자료 오차를 최소화할 할 수 있다. 본 연구에서는 2가지 유형에 대한 연구를 수행하였다, 첫 번째는 홍수해석을 위한 2차원 모형의 격자형상과 해상도에 따른 홍수위 및 홍수범람범위를 비교·분석하는 연구를 수행하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 홍수가 발생한 영국의 Severn 강 유역이다. 연구유역의 홍수 모델링을 위한 지형자료는 3m 해상도의 LiDAR(Light Detection And Ranging)를 이용하여 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수위 및 홍수범람범위를 비교·분석하기 위해서 홍수 발생기간 동안 촬영된 4개(2000년 8월 11, 14, 15, 17일)의 ASAR(Advanced Synthetic Aperture Radar) 영상자료를 활용하였다. 즉, ASAR 영상으로 촬용된 최대범람시기 및 홍수류의 배수기를 활용하여 최대범람범위뿐만 아니라 홍수가 증가하는 시기와 하류단 배수로 인해 홍수가 감소하는 시기를 모두 포함하는 홍수범람범위에 대한 격자유형별 2차원 홍수범람모형의 계산 결과에 대해 비교하였다. 두 번째는 아마존 강 중류유역의 2,500K㎡ 면적에 해당하는 대규모 유역에 대해 SRTM(Shuttle Radar Topography Mission) 지형자료를 이용하여 홍수기와 갈수기에 대해 2차원 모델링을 수행하고 그 결과를 위성자료와 비교하였다.

  • PDF

GAN을 이용한 흑백영상과 위성 SAR 영상간의 모의 및 컬러화 (Simulation and Colorization between Gray-scale Images and Satellite SAR Images Using GAN)

  • 조수민;허준혁;어양담
    • 대한토목학회논문집
    • /
    • 제44권1호
    • /
    • pp.125-132
    • /
    • 2024
  • 광학 위성영상은 국가 보안 및 정보 획득을 목적으로 사용되며 그 활용성은 증가하고 있다. 그러나, 기상 조건 및 시간의 제약으로 사용자의 요구에 적합하지 않은 저품질의 영상을 획득하게 된다. 본 논문에서는 광학 위성영상의 구름 폐색영역을 모의하기 위하여 고해상도 SAR 영상을 참조한 딥러닝 기반의 영상변환 및 컬러화 모델을 생성하였다. 해당 모델은 적용 알고리즘 및 입력 데이터 형태에 따라 실험하였으며 생성된 모의영상을 비교 분석하였다. 특히 입력하는 흑백영상과 SAR 영상간의 화소값 정보량이 유사하도록 하여 상대적으로 색상정보량 부족에서 오는 문제점을 개선하였다. 실험 결과, Gray-scale 영상과 고해상도 SAR 영상으로 학습한 모의영상의 히스토그램 분포가 비교적 원 영상과 유사하였고, 정량적인 분석을 위하여 산정한 RMSE 값은 약 6.9827, PSNR 값은 약 31.3960으로 나타났다.

고해상도 의학 데이터 전송에 적합한 자동 제어 버스트 크기 기반 손실 차등화 기법을 위한 동작 영역 분석 (Analysis of Operation Areas for Automatically Tuning Burst Size-based Loss Differentiation Scheme Suitable for Transferring High Resolution Medical Data)

  • 이용규
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.459-468
    • /
    • 2022
  • 의료 현장에서는 매우 고해상도의 이미지를 사용하고 있으며, 이는 손실에 매우 민감한 정보이다. 이에 따라 높은 대역폭뿐만 아니라 고신뢰성 전송을 제공할 수 있는 광 인터넷의 활용이 요구되고 있다. 그러나 인터넷의 특성상 다양한 종류의 데이터가 동일한 대역폭을 활용하게 되고, 이를 효과적으로 차별화할 수 있는 수단이 요구되고 있다. 이를 위해 광 지연 라인 버퍼가 많이 활용되고 있다. 그러나, 이러한 버퍼는 제공 부하, 측정된 데이터 버스트 크기, 기본 지연 유닛 등과 같은 최적값을 이용해 구성된다. 광 버퍼는 한 번 설정되면 변경할 수 없다. 그러므로 데이터 버스트 크기를 동적으로 변경시키는 방법이 활용되고 있다. 그러나 동적으로 버스트의 길이를 변화시키는 것은 상당한 불안정성을 내포하고 있다. 이에 본 논문에서는 안정적인 동작을 보장할 수 있는 동작 조건을 분석하고자 한다. 본 논문의 기법을 활용해 높은 우선순위의 고해상도 의료 데이터를 손실 없이 안정적으로 전송할 수 있다.

KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발 (Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map)

  • 송지용;정종철;이상훈
    • 한국환경생태학회지
    • /
    • 제32권6호
    • /
    • pp.686-697
    • /
    • 2018
  • 오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.

Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석 (Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step)

  • 이동준;김상완
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.475-491
    • /
    • 2021
  • 최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.