R&E (Research and Education) program has been emphasized since it can improve student's scientific thinking, problem solving ability, and creativity, with providing diverse opportunities for scientific research experiences that are difficult to access in this curriculum. In this study, we reconstructed a method of calculating high resolution sea surface temperature data in the coastal region around Korea using satellite data, and developed it into a R&E program for science-gifted students. In order to calculate the high resolution sea surface temperature data in the seas around Gyeonggi Bay and to understand the spatio-temporal distribution, 9 Landsat 8 OLI/TIRS (Operational Land Imager and Thermal InfraRed Sensor) satellite data were collected from December 21, 2013 to November 30, 2017. To understand the accurate sea surface temperature distribution, land area was masked by using SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model) data, tidal flat was detected by applying the land use classification algorithm, and cloud was removed by applying a threshold to visible wavelength band of Landsat 8 OLI/TIRS satellite. High resolution sea surface temperature data in the seas around Gyeonggi Bay was calculated by applying MCSST (Multi-Channel Sea Surface Temperature) to preprocessed Landsat 8 OLI/TIRS satellite data. In order to develop the R&E program that can be used practically, we simplified the research process and developed learning worksheets suitable for each research stage so that students can perform the research process step by step. We conducted R&E program for students of science and gifted students from June 24, 2017 to January 13, 2018 and confirmed the applicability of R&E program based on satellite data.
Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.
Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.
The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.
Accurate simulation of the meteorological field is very important to assess the wind resources. Some researchers showed that sea surface temperature (SST) plays a leading role on the local meterological simulation. New Generation Sea Surface Temperature (NGSST), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Real-Time Global Sea Surface Temperature (RTG SST) have different spatial distribution near the coast and OSTIA shows the best accuracy compared with buoy data in the southeastern coast of the Korean Peninsula. Those SST products are used to initialize the Weather Research and Forecasting (WRF) Model for November 13-23 2008. The simulation of OSTIA shows better result in comparison with NGSST and RTG SST. NGSST shows a large difference with OSTIA in horizontal and vertical wind fields during the weak synoptic condition, but wind power density shows a large difference during strong synoptic condition. RTG SST shows the similar patterns but smaller the magnitude and the extent.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.351-351
/
2011
최근 지구온난화와 더불어 이상기후가 대두됨에 따라 기상 예측이 더욱더 중요시되고 있다. 또한 이전부터 가뭄 및 홍수와 같은 기상현상으로 인한 피해 사례가 빈번하였으며, 이로 인하여 물 관리의 어려움을 겪고 있다. 한 예로 이상기후가 유난히 잦았던 2010년 여름철 경우 평년보다 발달한 북태평양고기압의 영향으로 여름철 92일 가운데 81일의 전국 평균기온이 평년보다 높게 나타났다. 또한 강우 일수가 평년에 비해 7.4일 많은 44.2일을 기록하였으며, 국지성 집중호우 사례가 빈번하였다. 또한 8월 9일 발생한 태풍 `뎬무'를 포함해서 한 달 동안 3개의 태풍이 한반도에 영향을 끼치는 이례적인 사례가 발생하였다. 따라서 본 연구는 이러한 기상재해에 따른 물 관리를 장기적으로 대비하고자 고해상도 전지구 모델 GME를 이용하여 2010년 여름철 강수 예측을 실시하였다. 강수 예측에 사용된 전지구 모델 GME는 기존의 카테시안 격자체계를 가진 모델과 달리 전구를 삼각형으로 구성된 20면체로 격자화 한 Icosahedral-hexagonal grid 격자체계로 구성되어 있어, 해상도 증가에 용이할 뿐만 아니라, HPC(High Performance Computing)환경에서 효율성이 높은 장점을 가지고 있다. 본 계절 예측을 수행함에 있어 발생하는 잡음을 최소화하고자, Time-lag 기법을 이용하여 5개의 앙상블 멤버로 구성되어있으며, 이를 비교 분석하기위해 Climatology를 이용하여 총 10개의 앙상블 멤버로 규준실험을 수행하였다. 선행 연구에 따르면 1개월 이상의 장기 적분의 경우 초기조건보다 외부 강제력이 더 중요한 역할을 한다고 연구된 바 있다. (Yang et al., 1998) 특히 계절 변동성의 경우 대기-해양간의 상호작용에 의해 지배되며, 이를 고려하여 본 연구는 해수면 온도를 경계 자료로 사용하여 계절 예측을 수행하였다. 앞서 말한 실험 계획을 바탕으로 하여 나온 결과를 통해 동아시아지역 및 한반도 도별 강수 및 온도 변수에 대해 순별 및 월별 카테고리맵 분석을 실시하여 한눈에 보기 쉽게 나타냈다. 또한 주요 도시별 강수량 및 온도의 시계열 분석을 실시하여 시간이 지남에 따라 나타나는 변동성을 확인하였다. 계절 예측 결과에서 온도의 경우 평년보다 높게 나타났으며, 이는 실제 온도 예측과도 유사한 패턴을 가졌다, 강수의 경우 7월부터 8월 중순까지 평년보다 다소 적게 모의되었으며, 8월 하순경 회복하는 것으로 예측하였다. 따라서 본 계절 강수 예측은 다소 역학 모델이 가지는 한계를 가지고 있으나, 실제와 비교하여 어느 정도의 경향성이나 패턴에 있어 유사성을 보임을 확인하였으며, 이를 장기적 차원의 물관리를 함에 있어 참고 및 활용 가능할 것으로 예상한다.
The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.
So, Byung-Jin;Yoo, Ji-Young;Kim, Min-Ji;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.5-5
/
2015
현재 우리나라에서 지상관측장비인 AWS(Automatic Weather System)와 ASOS(Automated Synoptic Observing System)기구가 한반도내 668개 지점에서 운영되고 있다. 이러한 장비는 지상관측장비로 하나의 지점에서 측정된 기상변량들이 특정 영역의 대푯값으로 사용되어지고 있다. 기존의 다양한 지점 단위의 수문 모형에서는 지상관측소를 통한 관측값을 적용하기에 어려움 없이 적절한 결과를 도출할 수 있었다. 컴퓨터의 발달로 인하여 복잡한 물리적 현상을 공간적으로 분석할 수 있는 모형의 구동이 가능해짐에 따라서 수문 분야에서도 다양한 분포형 해석 모형이 활발하게 개발 및 적용되고 있다. 지점 관측 자료는 공간적인 연속성을 반영하지 못하는 한계로 인하여 지점 관측자료를 이용한 공간자료의 생성 기법들이 사용되어지고 있지만 자연계에서 나타나는 정확한 공간적 현상을 재현해주지 못하는 문제점이 존재한다. 이러한 지점 관측의 한계를 해결하기 위하여 공간적인 관측이 가능한 레이더와 위성관측과 같은 원격 관측 장비들이 개발되어 공간적으로 연속성을 갖는 기상변량의 취득이 가능하여졌다. TRMM 강우자료는 지구 전체를 0.25도 약 25km 공간해상도를 갖으며 3시간 간격으로 제공되고 있다. 유역단위의 수문모형에 적용하기에 TRMM 강수자료의 공간해상도는 너무 커서 직접적인 적용에 어려움이 있다. 이러한 점에서 TRMM 자료의 상세화 기법을 통하여 수문모형에 적용이 가능한 1km 이하의 고해상도 자료를 생산하는 연구들이 진행되고 있다. 이러한 상세화 방법은 최종적으로 도출하고자 하는 공간해상도를 갖는 대체 변량(지표면 온도, 고도, 식생, 해수면 기압, 상대 습도, 대기온도, 풍향 등)을 이용하여 회귀분석의 형태로 분석이 이루어지고 있다. 그러나 대체 변량을 통해 도출된 상세화된 TRMM 강우는 간접적인 추정으로 인하여 정확한 결과의 도출에는 한계가 있을 것으로 판단된다. 이러한 점에서 본 연구에서는 한반도내 지상 관측값을 공간적 자료로 변환하여 주는데 효과적으로 평가받는 PRISM 모형에 적용하여 기존 SVM 모형을 통한 TRMM 상세화 결과가 갖는 정확성을 평가해 보고 지점 관측자료의 보간 기법의 평가에 TRMM 자료를 활용하는 방안에 대해 평가해 보고자 한다.
Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.6
/
pp.536-542
/
2023
Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.
Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
The Korean Journal of Quaternary Research
/
v.20
no.1
s.26
/
pp.51-66
/
2006
The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.