• Title/Summary/Keyword: 고해상도 컬러해부영상

Search Result 4, Processing Time 0.021 seconds

Development of a Korean Adult Female Voxel Phantom, VKH-Woman, Based on Serially Sectioned Color Slice Images (고해상도 연속절단면 컬러해부영상을 이용한 한국인 성인여성 복셀팬텀 VKH-Woman 개발)

  • Jeong, Jong Hwi;Yeom, Yoen Soo;Han, Min Cheol;Kim, Chan Hyeong;Ham, Bo Kyoung;Hwang, Sung Bae;Kim, Seong Hoon;Lee, Dong-Myung
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • The computational human phantom including major radiation sensitive organs at risk (OARs) can be used in the field of radiotherapy, such as the variation of secondary cancer risks caused by the radiation therapy and the effective dose evaluation in diagnostic radiology. The present study developed a Korean adult female voxel phantom, VKH-Woman, based on serially sectioned color slice images of Korean female cadaver. The height and weight of the developed female voxel phantom are 160 cm and 52.72 kg, respectively that are virtually close to those of reference Korean female (161 cm and 54 kg). The female phantom consists of a total of 39 organs, including 27 organs recommended in the ICRP 103 publication for the effective dose calculations. The female phantom composes of $261{\times}109{\times}825$ voxels (=23,470,425 voxels) and the voxel resolution is $1.976{\times}1.976{\times}2.0619mm^3$ in the x, y, and z directions. The VHK-Woman is provided as both ASCII and Binary data formats to be conveniently implemented in Monte Carlo codes.

Development of the Reference Korean Female Voxel Phantom (한국인 기준여성 체적소형 모의체 개발)

  • Ham, Bo-Kyoung;Cho, Kun-Woo;Yeom, Yoen-Soo;Jeong, Jong-Hwi;Kim, Chan-Hyeong;Han, Min-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was $1.976{\times}1.976{\times}2.0619\;mm^3$ and the voxel array size is $261{\times}109{\times}825$ in the x, y and z directions. Then, the voxel resolution was changed to $2.0351{\times}2.0351{\times}2.0747\;mm^3$ for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

Deformation of the Reference Korean Voxel Model and Its Effect on Dose Calculation (표준한국인 체적소 모델 HDRK-Man의 외형 보정 및 선량 산출에 미치는 영향 평가)

  • Jeong, Jong-Hwi;Cho, Sung-Koo;Cho, Kun-Woo;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.167-172
    • /
    • 2008
  • Recently a high-quality voxel model of a Korean adult male was constructed at Hanyang University by using very high resolution serially-sectioned anatomical images of a cadaver, which was provided by the Korean Institute of Science and Technology Information (KISTI). Most existing voxel phantoms are developed based on an individual in the supine posture. This study converted the HDRK-Man voxel model into surface model and adjusted the flattened back of the HDRK-Man to a normal shape in the upright posture using 3D graphic softwares such as $3D-DOCTOR^{TM}$, $Rapidform^{(R)}$2006, $Rhinoceros^{(R)}$4.0, $MAYA^{(R)}$8.5. The effective doses of adjusted model were compared with those of unadjusted model for some standard irradiation geometries (i.e., AP, PA, LLAT, RLAT). In general, the differences were not very large and, among those, the largest difference was found for the PA radiation geometry, as expected. These methodologies can be used for the development of various deformed posture models of HDRK-Man in the later stage of this project.