• Title/Summary/Keyword: 고해상도 위성

Search Result 686, Processing Time 0.029 seconds

Implementation of the Integrated Navigation Parameter Extraction from the Aerial Image Sequence Using TMS320C80 MVP (TMS320C80 MVP 상에서의 연속항공영상으리 이용한 통합 항법 변수 추출 시스템 구현)

  • Sin, Sang-Yun;Park, In-Jun;Lee, Yeong-Sam;Lee, Min-Gyu;Kim, Gwan-Seok;Jeong, Dong-Uk;Kim, In-Cheol;Park, Rae-Hong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.49-57
    • /
    • 2002
  • In this paper, we deal with a real time implementation of the integrated image-based navigation parameter extraction system using the TMS320C80 MVP(multimedia video processor). Our system consists of relative position estimation and absolute position compensation, which is further divided into high-resolution aerial image matching, DEM(Digital elevation model) matching, and IRS (Indian remote sensing) satellite image matching. Those algorithms are implemented in real time using the MVP. To achieve a real-time operation, an attempt is made to partition the aerial image and process the partitioned images in parallel using the four parallel processors in the MVP. We also examine the performance of the implemented integrated system in terms of the estimation accuracy, confirming a proper operation of the our system.

Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model (지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향)

  • Suh, Myoung-Seok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.75-90
    • /
    • 2005
  • This study examines the impacts of land cover changes on the East Asia summer monsoon with the National Center for Atmospheric Research Regional Climate Model (NCAR RegCM2), coupled with Biosphere Atmosphere Transfer Scheme (BATS). To assess the goals, two types of land cover maps were used in the simulation of summer climate. One type was NCAR land cover map (CTL) and the other was current land cover map derived from satellite data (land cover: LCV). Warm and cold surface temperature biases of $1-3^{\circ}C$ occurred over central China and Mongolia in CTL. The model produced excessive precipitation over northern land area but less over southern ocean of the model domain. Changes of biophysical parameters, such as albedo, minimum stomatal resistance and roughness length, due to the land cover changes resulted in the alteration of land-atmosphere interactions. Latent heat flux and wind speed in LCV increased noticeably over central China where deciduous broad leaf trees have been replaced by mixed farm and irrigated crop. As a result, the systematic warm biases over central China were greatly reduced in LCV. Strong cooling of central China decreased pressure gradient between East Asian continent and Pacific Ocean. The decreased pressure gradient suppressed the northward transport of moisture from south China and South China Sea. These changes reduced not only the excessive precipitation over north China and Mongolia but also less precipitation over south China. However, the land cover changes increased the precipitation over the Korean Peninsula and the Japan Islands, especially in July and August.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Report of Wave Glider Detecting by KOMPSAT-5 Spotlight Mode SAR Image (KOMPSAT-5 Spotlight Mode SAR 영상을 이용한 웨이브글라이더 탐지 사례 보고)

  • Lee, Yoon-Kyung;Kim, Sang-Wan;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.431-437
    • /
    • 2018
  • We analyzed the feasibility of detecting wave gliders moving on the sea surface using SAR images. For the experiment, a model was constructed and placed on the sea using a towing ship before and after the satellite observation time. In the acquisition of KOMPSAT-5 image, high resolution SAR data of spotlight mode was collected considering the small size of wave glider. As a result of the backscattering intensity analysis around the towing ship along with wave glider, several scattering points away from the ship were observed, which are not strong but clearly distinguished from the surrounding clutter values. Considering the distance from the center of the ship, it seems to be a signal by the wave glider. On the other hand, it is confirmed that the wave glider can be detected even at the very low false alarm rate ($10^{-6}$) of the target detection using CFAR. Although the scatter signal by the wave glider could be distinguished from the surrounding ocean clutter in the high resolution SAR image, further research is needed to determine if actual wave gliders are detected in various marine environments.

Improving of land-cover map using IKONOS image data (IKONOS 영상자료를 이용한 토지피복도 개선)

  • 장동호;김만규
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.101-117
    • /
    • 2003
  • High resolution satellite image analysis has been recognized as an effective technique for monitoring local land-cover and atmospheric changes. In this study, a new high resolution map for land-cover was generated using both high-resolution IKONOS image and conventional land-use mapping. Fuzzy classification method was applied to classify land-cover, with minimum operator used as a tool for joint membership functions. In separateness analysis, the values were not great for all bands due to discrepancies in spectral reflectance by seasonal variation. The land-cover map generated in this study revealed that conifer forests and farm land in the ground and tidal flat and beach in the ocean were highly changeable. The kappa coefficient was 0.94% and the overall accuracy of classification was 95.0%, thus suggesting a overall high classification accuracy. Accuracy of classification in each class was generally over 90%, whereas low classification accuracy was obtained for classes of mixed forest, river and reservoir. This may be a result of the changes in classification, e.g. reclassification of paddy field as water area after water storage or mixed use of several classification class due to similar spectral patterns. Seasonal factors should be considered to achieve higher accuracy in classification class. In conclusion, firstly, IKONOS image are used to generated a new improved high resolution land-cover map. Secondly, IKONOS image could serve as useful complementary data for decision making when combined with GIS spatial data to produce land-use map.

  • PDF

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM (고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성)

  • Moon Sang-Ki;Park Seung-Hwan;Hong Jinkyu;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.